Experimental design: Learn how to solve problems like a real scientist

Being a scientist is a little like being a detective. Scientists look at a problem or a dilemma, and then collect evidence to form a conclusion. Our society relies on scientists to be correct in their conclusions. For example, every year scientists develop a new flu shot to protect us from getting sick. To do this, they have to perform experiments to figure out which strains of the influenza virus are most likely to affect the population that year. Once they have collected enough experimental evidence, they create a flu shot that will provide the most effective protection from those strains.
We count on those scientists to form the correct conclusion and develop the right flu shot to protect us all from sickness. But how do they make sure that the answers they find are correct?
This is where experimental design comes into the picture.

What is experimental design?

Experimental design is all about planning experiments in order to ensure that the results are objective and valid.
Since experiments are a fundamental part of scientific discovery, it’s absolutely essential that we design them well. A poorly designed experiment will not provide any evidence to support a particular conclusion, and might even point toward an incorrect conclusion.
Take a look at the graph below, published by the New England Journal of Medicine, which compares the number of Nobel Prizes won to annual chocolate consumption per capita in 20 countries.
Causation vs Correlation example
The graph shows a clear correlation between the chocolate consumed and Nobel Prizes won. You might look at the evidence provided by this graph and conclude that eating chocolate makes you more likely to win a Nobel Prize, or even that chocolate makes you smarter. However, the graph fails to take into account other factors that might affect winning a Nobel Prize, such as education standards in each country, or the available research funding. This is a classic example of mistaking correlation for causation.
A well designed experiment would account for those other factors, using positive and negative controls to measure whether chocolate actually influences the likelihood of winning a Nobel Prize.

How do you plan an effective experiment?

Step 1: Ask a question

All scientific research starts with a question that you want to answer. For example, does eating chocolate increase intelligence?

Step 2: Develop a hypothesis

Your hypothesis is a testable explanation of the research question. The experiment you design will give evidence that either supports or refutes that hypothesis. Be careful not to confuse hypotheses with predictions. A prediction is what you think will happen in the future, while a hypothesis is a possible explanation of what is happening now.
A hypothesis could be something like: Eating two ounces of chocolate per day increases IQ.

Step 3: Choose the experimental model

The experimental model is the technique and sample you use to test your hypothesis. In other words, what tests you’ll perform, and what test subjects you’ll use. Some experiments use plates of cells, some use mice, some use computer programs, and others use humans. It all depends on what you’re testing!
There are many experimental models, and you should try to choose the most effective one for your experiment.

Step 4: Define variables

Once you have an experimental model to test your hypothesis, you need to define which variable you want to measure. In an experiment, there is generally a dependent variable and an independent variable. Independent variables are controlled by the experimenter. Dependent variables are what you measure in response to changes in the independent variable.
In our example, the independent variable is the amount of chocolate consumed, and the dependent variable is the measured change in IQ.

Step 5: Create controls

Experimental controls allow you to be more certain that the independent variable is responsible for the changes in the dependent variable. There are two kinds of controls: you expect a known response in positive controls, and expect no response in negative controls.
A positive control would have to be a treatment that is known to increase IQ, such as proven brain training exercises, while a negative control would be a lack of treatment altogether.

Step 6: Perform the experiment

Now it’s time to experiment! Run your tests on the test groups, positive controls, and negative controls, and record the results.

Step 7: Analyze the results

Look at the resulting data and analyze it. Does your data support your hypothesis, or not?

Step 8: Repeat!

Once you have carried out your experiment with controls, you will have an idea of whether or not your hypothesis is correct – but that still isn’t proof!
We can only make conclusions if the experiment is reproducible and the results are consistent over several replications. Once you have performed the experiment several times and observed similar results, then you can analyze the data and start to draw conclusions.
Are you ready to set up your own experiment and test side effects of a suspicious new drug? Then try our experimental design simulation.

About the Experimental Design virtual lab simulation

The best way to learn how to design a scientific experiment is to try it yourself. In the Experimental Design simulation, you will step into the shoes of a pharmaceutical detective for a day. Your task is to design and carry out an effective experiment to find out if a new drug is causing damage to kidney cells. Here’s a brief overview of the topics you’ll cover in the simulation below.

The scientific method

Scientific Method Steps Chart
Humans have always strived to explain natural phenomena. In the first mission of the experimental design simulation, you will do just that. The scientific method gives you a practical template for forming and testing conclusions. Using it, you can investigate phenomena, acquire new knowledge, or correct and integrate existing knowledge surrounding your experiment.

Design an experiment

In your next mission you have the freedom to design your own experiment from scratch while examining human kidney cells under a microscope. Every tool you need to design and perform your experiment is available in this virtual lab. You will:

  • Choose an experimental model. Choose the correct experimental model from yeast cells, mice, human sample, or kidney cell line, to design a scientifically sound experiment for testing the effect of the suspicious drug. And don’t be afraid to make mistakes – in this virtual simulation you can repeat the experiment as many times as you want.

Experimental models examples

  • Define the dependent and independent variables. Based on your experimental model, which variable will you be manipulating as the experimenter? What will you be measuring?
  • Create controls. The positive and negative controls will help you conclude whether a suspicious compound could be the reason behind the reported epidemic. You’ll get to investigate the effects of compounds in the drug as compared to a negative control with just the buffer, and a positive control treated with a compound known to cause kidney damage.
  • Perform the experiment. After adding the treatments to the positive control, negative control, and experimental group, use the lab equipment to observe the changes in the dependent variable in each experimental group.
  • Analyze the results and present your findings. Look at your data, and decide whether or not it supports your hypothesis. Then present the results of your experiment at a meeting with a virtual professor.

Sign up to our newsletter to stay up to date with the latest in science teaching and learning.

We Can Make Virtual Labs Work for You

“The virtual labs have proven to stimulate students' natural curiosity, knowledge retention and outcomes.”
Dr. Brian Harfe
University of Florida

Take a 15 Minute “Lab Break” with a Virtual Lab Expert

Talk to one of our Virtual Lab Experts about how Labster can engage your students with our virtual labs for online, hybrid and face-to-face courses.

Lab break coffee with us

Please fill out the form below to talk with one of our Lab Experts. 

You must opt in to receive emails from Labster. You can unsubscribe at any time.
Thank you for your submission!

Sales Demo: Discover how Labster
improves student grades and learning outcomes!

Limited to 100 people

The simulation is already added to this package

Step 1: Choose your simulations

Find and select the simulations that you want to add to your course.

Step 2: Review simulation list

This is the list of simulations that will be added to your course. Click Download once you are ready.

Press the + button next to the simulations that you want to add to your list, or add all the simulations of this package by pressing “add all simulations”.


Related Simulations

No simulations added yet.
    Download the .zip file and upload it to your LMS.

    Download Common Cartridge File

    Choose your Learning Management System below:
    Generating download link. Please wait...
    Congratulations! You can now upload the .zip file into your LMS by the following these instructions:

    Simulation name

    Image container

    Learning Outcomes

    Learning outcomes container


    Techniques container

    Simulation Description

    Description container

    Are you sure you want to delete?

    Package deleted successfully

    IMPORTANT: Check the original email with instructions from your instructor to verify how you should gain access.

    Link Access

    Did you receive a link/URL to access Labster from your teacher? This is for either “Labster Direct” or “Quick Access”, and no login is required. See info below.

    School LMS

    Are you accessing Labster from your school’s LMS, such as Canvas, Blackboard, Moodle or Brightspace? Click below to read more.
    IMPORTANT: Please check your original email to confirm the correct access option.

    Labster Direct / Quick Access

    Did you receive a link/URL to access simulations through the Labster Direct or Quick Access pages? If so, no login is required. See info below.

    Your LMS

    Are you accessing Labster from your school’s LMS, such as Canvas, Blackboard, Moodle or Brightspace? Click below to read more.

    Faculty Resources

    To access the Faculty Resources page (instructors only) and review Labster simulations, please log in below.