Back to simulations

Electrophilic Aromatic Substitution: Mechanisms and resonances | Virtual Lab

Get Pricing
Higher Education
 
Electrophilic Aromatic Substitution: Mechanisms and resonances
Labster is used by 1,000's of amazing schools and universities
Learn more

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

About This Simulation

Step into the virtual classroom to learn the secrets behind the electrophilic aromatic substitution. Explore the mechanism of this reaction, the effects of activating and deactivating groups, and the stability of the different resonance structures. Can you help create the perfect perfume?

Learning Objectives

  • Understand the mechanism of the EAS
  • Classify substituents of benzene as activating or deactivating and as ortho, meta, and para directing groups
  • Recognize resonance structures to explain the outcome of any EAS

About This Simulation

Level:
Higher Education
Length:
15
Min
Accessibility Mode:
Available
Languages:
English

Lab Techniques

No lab techniques are listed for this simulation.

Related Standards

University:
  • US College Year 2
  • US College Year 3
NGSS:
AP:
LB:
No lab techniques are listed for this simulation.

Learn More About This Simulation

Can you help create a best-selling scent? Perfumes are everywhere — and so are aromatic compounds. In this simulation, you will learn about the electrophilic aromatic substitution, answer a variety of quiz questions, and then plan the synthesis of your favorite aromatic compound!

Understand the mechanism

If you’re making a perfume, electrophilic aromatic substitution is a key reaction when synthesizing an aromatic molecule of interest. You’ll start your experience in a pharmacy to learn about vanillin. Then you’ll be teleported to the virtual classroom to start your experience. Here, you’ll learn in an interactive way about the mechanism of the reaction, choosing the direction of movement of electrons and the key reagents.

Choose activators and deactivators

Once you’re familiar with the reaction on a benzene ring, you’ll move to the effects of directing groups when combining an electrophile with a mono substituted benzene ring. You’ll place the different substituents on a reactivity graph and choose the right product of reaction so that you’ll be able to characterize a substituent as an activator or deactivator and predict the correct products.

The stability of resonance structures

Understanding the mechanism is not enough when planning a synthetic route. In this activity you’ll have to connect the different resonance structures of a mono substituted benzene attacked by an electrophile with the concept of stability, to help predict the dominant structure at the end of the reaction. 

A real perfume-maker

Now that you’ve acquired all this knowledge, you’re ready to go into a real lab and plan the synthesis of your favorite aromatic compound. Will you create the new best-selling perfume?

Experience Labster for Yourself

Boost Learning with Fun

75% of students show high engagement and improved grades with Labster

Discover Simulations That Match Your Syllabus

Easily bolster your learning objectives with relevant, interactive content

Place Students in the Shoes of Real Scientists

Practice a lab procedure or visualize theory through narrative-driven scenarios

Try Now
a group of people standing around a laptop computer

For Science Programs Providing a Learning Advantage

Professor Margaret Brady was able to enhance student learning with A&P virtual labs.
Margaret Brady
Associate Professor
North Dakota State College of Science

“They did the simulation at home, then completed the in-person lab within 30 minutes, no questions asked, and passed the quiz with flying colors.”

Lewis Mattin
PhD
Lecturer in Human Physiology
University of Westminster

"I saw some of the students who clearly didn’t necessarily like sitting there reading a book discover they could turn on Labster and keep up with the rest of the class because it spoke to them.

Melody McGill
Curriculum Coordinator
Modesto City Schools

"Having something that's engaging for the students gives teachers that opportunity to breathe and get excited again. Because they're seeing the kids light up, they're seeing the kids engage with content."

user
Kyle Hammon
Adjunct Instructor
Wenatchee Valley College

"The question always is, ‘Can we demonstrate that the students are meeting course outcomes?’ Check! We can do that.”

Dr. Melody Esfandiari
Chemistry Lecturer
San José State University

"We surveyed over 400 students. More than 90% thought Labster was easy to navigate, and that it was fun, but more importantly, most of them felt confident that they could execute the labs in person. And that confidence is a big deal."

a man in a black sweater and white shirt
Dr. Stuart Goodall
Lecturer
Northumbria University

“The Labster simulations get students to do things, and they're not just sitting there consuming a webinar where their mind can drift. They become an active participant in that learning experience.”

a black and white photo of a clock tower
the case western reserve university logo
the university of texas foundation logo
undefined
undefined
undefined
undefined
the logo for the university of washington
the university of texas at san antonio logo
undefined
a black and blue logo with a blue circle
a picture of a building with a clock on it
the university of florida logo
a black and blue logo with the words kansas on it
the logo for the university of washington
undefined
a green and white logo with the words tulane university
undefined
johns hopkins university logo on a white background
the university of skowde logo

FAQs

Find answers to frequently asked questions.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

How do students access Labster?

Labster is hosted online, which means that students only have to login from their internet browsers once an account is created.

How is Labster purchased?

Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.

How is Labster different from other learning solutions?

Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.

What types of courses does Labster support?

Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.