Back to simulations

Osmosis and Diffusion: Choose the right solution for an intravenous drip | Virtual Lab

Get Pricing
High School
Higher Education
 
Osmosis and Diffusion: Choose the right solution for an intravenous drip
Labster is used by 1,000's of amazing schools and universities
Learn more

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

About This Simulation

Help save Frank’s life by choosing the correct saline solution for an intravenous drip. Join Dr. One in the lab to discover what a hypotonic, isotonic and hypertonic solution is and how water is transported across the cell membrane in osmosis.

Learning Objectives

  • Understand how solute concentration drives the movement of molecules across a semipermeable membrane
  • Distinguish between osmosis and diffusion
  • Define the terms osmosis and hypotonic, hypertonic and isotonic solutions
  • Compare and contrast osmosis in hypotonic and hypertonic solutions

About This Simulation

Level:
High School
Higher Education
Length:
14
Min
Accessibility Mode:
Available
Languages:
English
French
Spanish
German
Italian

Lab Techniques

  • Determine isotonic point
  • Microscopy
No lab techniques are listed for this simulation.

Related Standards

University:
NGSS:
  • HS-LS1-2
AP:
LB:
  • 2.2 Water
  • 11.3 The kidney and osmoregulation
  • Biology 1.3 Membrane structure
No lab techniques are listed for this simulation.

Learn More About This Simulation

Choosing an IV fluid

You will meet Frank in the hospital. He is dehydrated because of sunstroke and needs extra fluids. There are three solutions available, but which one is the correct one to avoid damaging Frank’s blood cells?

Finding the isotonic point

Join Dr. One in the lab to understand exactly how water is transported across the cell membrane in osmosis. An animation will show you how the solute concentration of a solution can be equalized through diffusion and osmosis. You will see how solutes can move through the solution via diffusion and how water is transported across a semipermeable membrane in osmosis. You will then place potato cubes in a serial dilution of saline to see how water moves either into or out of the cells depending on the salt concentration.

Once you have plotted your results, you will be able to identify the isotonic point where the salt concentration of the solution is exactly the same as the salt concentration inside the cells. You will also see in which direction the water moves in both a hypotonic and a hypertonic solution. Finally, you can see the effect of hypotonic and hypertonic solutions on cells by adding these solutions to a blood sample and observing the red blood cells under the microscope. 

Back to the hospital

After your experiments, you fully understand the three saline solutions that were available to Frank and the effect that the salt concentration will have on the cells in his blood. Review your hypothesis and advise Frank and his doctors on the correct IV solution.

Experience Labster for Yourself

Boost Learning with Fun

75% of students show high engagement and improved grades with Labster

Discover Simulations That Match Your Syllabus

Easily bolster your learning objectives with relevant, interactive content

Place Students in the Shoes of Real Scientists

Practice a lab procedure or visualize theory through narrative-driven scenarios

Try Now
a group of people standing around a laptop computer

For Science Programs Providing a Learning Advantage

Professor Margaret Brady was able to enhance student learning with A&P virtual labs.
Margaret Brady
Associate Professor
North Dakota State College of Science

“They did the simulation at home, then completed the in-person lab within 30 minutes, no questions asked, and passed the quiz with flying colors.”

Lewis Mattin
PhD
Lecturer in Human Physiology
University of Westminster

"I saw some of the students who clearly didn’t necessarily like sitting there reading a book discover they could turn on Labster and keep up with the rest of the class because it spoke to them.

Melody McGill
Curriculum Coordinator
Modesto City Schools

"Having something that's engaging for the students gives teachers that opportunity to breathe and get excited again. Because they're seeing the kids light up, they're seeing the kids engage with content."

user
Kyle Hammon
Adjunct Instructor
Wenatchee Valley College

"The question always is, ‘Can we demonstrate that the students are meeting course outcomes?’ Check! We can do that.”

Dr. Melody Esfandiari
Chemistry Lecturer
San José State University

"We surveyed over 400 students. More than 90% thought Labster was easy to navigate, and that it was fun, but more importantly, most of them felt confident that they could execute the labs in person. And that confidence is a big deal."

Mr stuart
Dr. Stuart Goodall
Lecturer
Northumbria University

“The Labster simulations get students to do things, and they're not just sitting there consuming a webinar where their mind can drift. They become an active participant in that learning experience.”

FAQs

Find answers to frequently asked questions.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

How do students access Labster?

Labster is hosted online, which means that students only have to login from their internet browsers once an account is created.

How is Labster purchased?

Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.

How is Labster different from other learning solutions?

Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.

What types of courses does Labster support?

Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.