Left arrow black
Back to simulations

Sensory transduction: Learn why you feel pain when you get hit by a rock Virtual Lab

Learn the basic mechanisms of sensory transduction by performing in vitro and in vivo experiments and determine which anesthetic drug will allow your friend to keep climbing a mountain without having the muscles affected.

Try for FreeTry for Free
Green Checkmark Icon

University / College

Logo Taylor's UniversityArizona State University LogoLogo uOttawaLogo Univ. Essex
Labster is used by 1,000's of amazing schools and universities
Learn more
Blue Arrow Right
Sensory transduction: Learn why you feel pain when you get hit by a rock

About this Simulation

How do anesthetic drugs work? In this simulation, you will learn the basics of sensory transduction by testing and comparing the mechanisms of action of two anesthetic drugs. Explore which stimuli activate different types of sensory neurons and behold the flow of ions inside an axon. Perform a patch-clamp experiment to analyze how the anesthetics impact the pain transduction in the nociceptors, and confirm the results by performing some in vivo experiments before selecting the best pain killer for your friend.

Explore sensory neurons

Which neurons are activated when you get a cut? What about when you are hit by a rock? Explore the different types of sensory neurons on the holo-table and see the impact of six different stimuli as many times as you want! Then, figure out which stimuli activate nociceptors to transduce pain, and dive into an axon to learn which transmembrane receptor makes nociceptors sensitive to pain and the flow of ions inside.

Set up your own patch-clamp experiment

You will dissect some dorsal root ganglia from a rat’s spinal cord to use for a patch clamp experiment. You will set up the equipment and use different buffers to conduct the voltage-clamp experiment. You will then be able to see and analyze the results on the virtual PC screen in a short time, avoiding long waiting times in between changes of buffers, and allowing you tol test the effect of the two anesthetics to evaluate their effect on the flow of ions and in sensory transduction.

Confirm your results with an in vivo model

After analyzing the in vitro data, you will determine if the differences in the effect of the two pain killers are confirmed in in vivo studies. This includes conducting latency to withdrawal experiments and analyzing motor function experimental results. You will finally dive one last time into the axon to see the effect of each anesthetic drug inside the nociceptors. Will you be able to determine which drug is best to give your injured friend?

Learning Objectives

At the end of this simulation, you will be able to:

  • Understand the types of sensory neurons and their responses to different stimuli

  • Describe the response of a sensory receptor to chemical stimuli at the cellular and organismal level

  • Set up a voltage-clamp experiment, and measure and interpret changes in current in response to chemical stimuli

  • Analyze and interpret patch clamp results to contrast how two sodium channel blockers inhibit capsaicin-induced excitability

  • Collect data and analyze it on withdrawal reflex time in an acute pain model

Techniques in Lab

At the end of this simulation, you will be able to:

  • Latency to Withdrawal
  • Voltage-clamp method

How do virtual labs work?

Engage students in science through interactive learning scenarios. Simulate experiments, train lab techniques, and teach theory through visual experiences that enhance long-term learning outcomes.

Green Checkmark Icon

300+ Web-based simulations that can be played on laptops, Chromebooks, and tablets/iPads without installing any software

Green Checkmark Icon

Teacher dashboard to automate grading and track student progress

Green Checkmark Icon

Embedded quizzes to help students master science content

Green Checkmark Icon

Library of learning resources, lab reports, videos, theory pages, graphics and more

Book a Free Consultation

Relevant Course Packages

All Course Packages
Black arrow right

Get Started Now!

Try Labster with your students right away.
Green Checkmark Icon

Track student progress

Green Checkmark Icon

Assess with customizable quizzes

Green Checkmark Icon

Invite your students to play simulations

Green Checkmark Icon

Explore over 300 Labster simulations

Green Checkmark Icon

30 days for free, no credit card needed

Start your free trial today to discover the possibilities with Virtual Labs

Integrate with your LMS

Labster integrates with all major LMS (Learning Management Systems) so that educators can use their gradebooks to track students’ performance data and students can keep a record of their work. Labster is compatible with Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, and Brightspace / D2L. It’s also possible to use Labster without an LMS.

How to Integrate Your LMS
Blue Arrow Right

Frequently asked questions

What do students learn in the "Sensory transduction: Learn why you feel pain when you get hit by a rock" simulation?
What is the simulated Biology scenario in this virtual lab?
What other Biology labs does Labster offer?