Back to simulations

Sensory transduction: Learn why you feel pain when you get hit by a rock | Virtual Lab

Get Pricing
High School
Higher Education
 
Sensory transduction: Learn why you feel pain when you get hit by a rock
Labster is used by 1,000's of amazing schools and universities
Learn more

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

About This Simulation

Learn the basic mechanisms of sensory transduction by performing in vitro and in vivo experiments and determine which anesthetic drug will allow your friend to keep climbing a mountain without having the muscles affected.

Learning Objectives

  • Understand the types of sensory neurons and their responses to different stimuli
  • Describe the response of a sensory receptor to chemical stimuli at the cellular and organismal level
  • Set up a voltage-clamp experiment, and measure and interpret changes in current in response to chemical stimuli
  • Analyze and interpret patch clamp results to contrast how two sodium channel blockers inhibit capsaicin-induced excitability
  • Collect data and analyze it on withdrawal reflex time in an acute pain model

About This Simulation

Level:
High School
Higher Education
Length:
38
Min
Accessibility Mode:
Available
Languages:
English
Spanish

Lab Techniques

  • Latency to Withdrawal
  • Voltage-clamp method
No lab techniques are listed for this simulation.

Related Standards

University:
  • Early Stage Bachelors Level
  • US College Year 1
  • US College Year 2
NGSS:
  • HS-LS1-2
AP:
  • No direct alignment
LB:
  • A.3 Perception of stimuli
No lab techniques are listed for this simulation.

Learn More About This Simulation

How do anesthetic drugs work? In this simulation, you will learn the basics of sensory transduction by testing and comparing the mechanisms of action of two anesthetic drugs. Explore which stimuli activate different types of sensory neurons and behold the flow of ions inside an axon. Perform a patch-clamp experiment to analyze how the anesthetics impact the pain transduction in the nociceptors, and confirm the results by performing some in vivo experiments before selecting the best pain killer for your friend.

Explore sensory neurons

Which neurons are activated when you get a cut? What about when you are hit by a rock? Explore the different types of sensory neurons on the holo-table and see the impact of six different stimuli as many times as you want! Then, figure out which stimuli activate nociceptors to transduce pain, and dive into an axon to learn which transmembrane receptor makes nociceptors sensitive to pain and the flow of ions inside.

Set up your own patch-clamp experiment

You will dissect some dorsal root ganglia from a rat’s spinal cord to use for a patch clamp experiment. You will set up the equipment and use different buffers to conduct the voltage-clamp experiment. You will then be able to see and analyze the results on the virtual PC screen in a short time, avoiding long waiting times in between changes of buffers, and allowing you tol test the effect of the two anesthetics to evaluate their effect on the flow of ions and in sensory transduction.

Confirm your results with an in vivo model

After analyzing the in vitro data, you will determine if the differences in the effect of the two pain killers are confirmed in in vivo studies. This includes conducting latency to withdrawal experiments and analyzing motor function experimental results. You will finally dive one last time into the axon to see the effect of each anesthetic drug inside the nociceptors. Will you be able to determine which drug is best to give your injured friend?

Experience Labster for Yourself

Boost Learning with Fun

75% of students show high engagement and improved grades with Labster

Discover Simulations That Match Your Syllabus

Easily bolster your learning objectives with relevant, interactive content

Place Students in the Shoes of Real Scientists

Practice a lab procedure or visualize theory through narrative-driven scenarios

Try Now
a group of people standing around a laptop computer

For Science Programs Providing a Learning Advantage

Professor Margaret Brady was able to enhance student learning with A&P virtual labs.
Margaret Brady
Associate Professor
North Dakota State College of Science

“They did the simulation at home, then completed the in-person lab within 30 minutes, no questions asked, and passed the quiz with flying colors.”

Lewis Mattin
PhD
Lecturer in Human Physiology
University of Westminster

"I saw some of the students who clearly didn’t necessarily like sitting there reading a book discover they could turn on Labster and keep up with the rest of the class because it spoke to them.

Melody McGill
Curriculum Coordinator
Modesto City Schools

"Having something that's engaging for the students gives teachers that opportunity to breathe and get excited again. Because they're seeing the kids light up, they're seeing the kids engage with content."

user
Kyle Hammon
Adjunct Instructor
Wenatchee Valley College

"The question always is, ‘Can we demonstrate that the students are meeting course outcomes?’ Check! We can do that.”

Dr. Melody Esfandiari
Chemistry Lecturer
San José State University

"We surveyed over 400 students. More than 90% thought Labster was easy to navigate, and that it was fun, but more importantly, most of them felt confident that they could execute the labs in person. And that confidence is a big deal."

Mr stuart
Dr. Stuart Goodall
Lecturer
Northumbria University

“The Labster simulations get students to do things, and they're not just sitting there consuming a webinar where their mind can drift. They become an active participant in that learning experience.”

FAQs

Find answers to frequently asked questions.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

How do students access Labster?

Labster is hosted online, which means that students only have to login from their internet browsers once an account is created.

How is Labster purchased?

Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.

How is Labster different from other learning solutions?

Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.

What types of courses does Labster support?

Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.