Back to simulations

Invertebrate Model System: Find the genetic cause of a disease using C. elegans | Virtual Lab

Higher Education
Biology
Invertebrate Model System: Find the genetic cause of a disease using C. elegans
Labster is used by 1,000's of amazing schools and universities
Learn more

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

About This Simulation

Help a group of doctors in their search for the genetic cause of a rare disease by performing a genetic screening using C. elegans as the animal model.

Learning Objectives

  • Explain the importance of C. elegans as an invertebrate model system in medical research
  • Perform a forward genetic screen
  • Use sequencing data to discover the genes of interest

About This Simulation

Level:
Higher Education
Length:
50
Min
Accessibility Mode:
Available
Languages:
English

Lab Techniques

  • Random mutagenesis
  • Genetic screening
  • Working with C. elegans
No lab techniques are listed for this simulation.

Related Standards

University:
NGSS:
  • No direct alignment
AP:
  • No direct alignment
LB:
  • No direct alignment
No lab techniques are listed for this simulation.

Learn More About This Simulation

A patient with a deformed head is examined at the hospital. He has been diagnosed with Saethre-Chotzen syndrome. In this simulation, you will learn how to use an invertebrate model system to perform a forward genetic screening and find out the cause of this rare disease.

Knowing your model organism

The experiments performed in this simulation are based on C. elegans, an invertebrate model system widely used to investigate genetic diseases. Using the microscope, you will learn about its life cycle and identify the different stages, as well as how to differentiate males from hermaphrodites.

Give a twist to your genetic screening using fluorescence

Despite mutations in the TWIST gene being associated with this rare disease, the doctors could not find any mutation in this gene in the patient. In order to investigate further, you will mutate your sample of C. elegans. They already carry the green fluorescent protein linked to the Twist protein so you can track the individuals carrying mutations under the fluorescence microscope throughout the experiment. You will be able to perform a complete genetic screening in this invertebrate model system in one-tenth of the time you would need in real life!

Discover what mutations are involved in the Saethre-Chotzen syndrome

You will analyze the initial cross progeny from breeding a mutated male worm with hermaphrodites and screen the subsequent F2 and F3 generations. During the process, you will understand the differences between dominant and recessive mutations, and you will be able to explore each plate with the different generations of this invertebrate model system as much as you want!

At the end of the screening, you will be able to discuss which mutations are related to the disease phenotype. Will you be able to find the mutated protein?

Experience Labster for Yourself

Boost Learning with Fun

75% of students show high engagement and improved grades with Labster

Discover Simulations That Match Your Syllabus

Easily bolster your learning objectives with relevant, interactive content

Place Students in the Shoes of Real Scientists

Practice a lab procedure or visualize theory through narrative-driven scenarios

Try Now
Try the Lab Safety simulation
a group of people standing around a laptop computer

For Science Programs Providing a Learning Advantage

Professor Margaret Brady was able to enhance student learning with A&P virtual labs.
Margaret Brady
Associate Professor
North Dakota State College of Science

“They did the simulation at home, then completed the in-person lab within 30 minutes, no questions asked, and passed the quiz with flying colors.”

Lewis Mattin
PhD
Lecturer in Human Physiology
University of Westminster

"I saw some of the students who clearly didn’t necessarily like sitting there reading a book discover they could turn on Labster and keep up with the rest of the class because it spoke to them.

Melody McGill
Curriculum Coordinator
Modesto City Schools

"Having something that's engaging for the students gives teachers that opportunity to breathe and get excited again. Because they're seeing the kids light up, they're seeing the kids engage with content."

user
Kyle Hammon
Adjunct Instructor
Wenatchee Valley College

"The question always is, ‘Can we demonstrate that the students are meeting course outcomes?’ Check! We can do that.”

Dr. Melody Esfandiari
Chemistry Lecturer
San José State University

"We surveyed over 400 students. More than 90% thought Labster was easy to navigate, and that it was fun, but more importantly, most of them felt confident that they could execute the labs in person. And that confidence is a big deal."

a man in a black sweater and white shirt
Dr. Stuart Goodall
Lecturer
Northumbria University

“The Labster simulations get students to do things, and they're not just sitting there consuming a webinar where their mind can drift. They become an active participant in that learning experience.”

a black and white photo of a clock tower
the case western reserve university logo
the university of texas foundation logo
undefined
undefined
undefined
undefined
the logo for the university of washington
the university of texas at san antonio logo
undefined
a black and blue logo with a blue circle
a picture of a building with a clock on it
the university of florida logo
a black and blue logo with the words kansas on it
the logo for the university of washington
undefined
a green and white logo with the words tulane university
undefined
johns hopkins university logo on a white background
the university of skowde logo

FAQs

Find answers to frequently asked questions.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

How do students access Labster?

Labster is hosted online, which means that students only have to login from their internet browsers once an account is created.

How is Labster purchased?

Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.

How is Labster different from other learning solutions?

Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.

What types of courses does Labster support?

Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.