Left arrow black
Back to simulations

SDS-PAGE: Separating proteins by molecular weight Virtual Lab

Investigate each step of SDS-PAGE from gel selection and sample preparation to chamber assembly and what really happens when the current turns on, to separate proteins solely by molecular weight, bringing us one step closer to identifying the protein.

Try NowTry for Free
Green Checkmark Icon

Higher Education

Logo Taylor's UniversityArizona State University LogoLogo uOttawaLogo Univ. Essex
Labster is used by 1,000's of amazing schools and universities
Read Case Studies
Blue Arrow Right
 
SDS-PAGE: Separating proteins by molecular weight

About this Simulation

SDS-PAGE creates conditions for separating proteins by an identifying characteristic, molecular weight. In this simulation, you will learn how SDS, the acrylamide gel, buffer solutions, and the electric current work together to separate proteins.

Running an SDS-PAGE

In this lab, students will determine if a particular sized protein is present in their samples. To do this, they must learn about the mechanisms of how SDS-PAGE works including deciding on which gel size to use, how the sample buffer prepares the sample, how to assemble the electrophoresis chamber, and ultimately the interactions between pH, the buffer solutions, and the electric current.

Mechanisms behind SDS-PAGE

In order to determine if the sample contains a protein of a specific molecular weight, students first need to select the right acrylamide gel concentration. This simulation allows them to trial different concentrations to see the effect on protein separation. From here, they prepare the sample through visualizing the effects of each component of the sample buffer on the sample itself. They will then run an SDS-PAGE by assembling the electrophoresis chamber and learning how the current and ions of the buffer solutions interact. With the results of the SDS-PAGE being ready immediately, students will determine which samples contain the target protein. 

Gel Review

With SDS-PAGE thoroughly explored, students will evaluate their stained gel to identify if the samples have evidence of the target protein. They will also evaluate other gels as usable or unusable and identify reasons that may have caused the outcome. 

By understanding SDS-PAGE, will you find the target protein and be able to identify a successful gel? 

Learning Objectives

At the end of this simulation, you will be able to:

  • Assemble the SDS-PAGE apparatus including loading samples and size markers
  • Select an appropriate gel and associated electrical settings for resolving the proteins of interest
  • Critique the quality of a complete SDS-PAGE run using a removable protein stain

Techniques in Lab

At the end of this simulation, you will be able to:

  • Gel electrophoresis
  • SDS-PAGE

How do virtual labs work?

Engage students in science through interactive learning scenarios. Simulate experiments, train lab techniques, and teach theory through visual experiences that enhance long-term learning outcomes.

Green Checkmark Icon

300+ Web-based simulations that can be played on laptops, Chromebooks, and tablets/iPads without installing any software

Green Checkmark Icon

Teacher dashboard to automate grading and track student progress

Green Checkmark Icon

Embedded quizzes to help students master science content

Green Checkmark Icon

Library of learning resources, lab reports, videos, theory pages, graphics and more

Book a Free Consultation

Relevant Course Packages

All Course Packages
Black arrow right

Get Started Now!

Try Labster with your students right away.
Green Checkmark Icon

Track student progress

Green Checkmark Icon

Assess with customizable quizzes

Green Checkmark Icon

Invite your students to play simulations

Green Checkmark Icon

Explore over 300 Labster simulations

Green Checkmark Icon

30 days for free, no credit card needed

Start your free trial today to discover the possibilities with Virtual Labs

Integrate with your LMS

Labster integrates with all major LMS (Learning Management Systems) so that educators can use their gradebooks to track students’ performance data and students can keep a record of their work. Labster is compatible with Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, and Brightspace / D2L. It’s also possible to use Labster without an LMS.

How to Integrate Your LMS
Blue Arrow Right

Frequently asked questions

What do students learn in the "SDS-PAGE: Separating proteins by molecular weight" simulation?
What is the simulated Biology scenario in this virtual lab?
What other Biology labs does Labster offer?