Action Potential Lab: Experiment with a squid neuron

Action Potential
Time to complete course: 30 min.

About Action Potential Lab: Experiment with a squid neuron Virtual Lab Simulation

Did you know that nerve cells propagate an electric signal along their own membrane to transfer information? They are called action potentials, and in this simulation you will use a squid’s giant neuron to learn about the molecular mechanisms behind this phenomenon. You will learn to recognize the typical shape of an action potential, but also to describe the driving forces behind each of its different phases.

Identify a neurotoxin from its effect on a nerve

In this simulation your mission is to help out a hospital who just received a patient with severe food poisoning. A sample from the patient has revealed the presence of a neurotoxin, and they need you to identify it as soon as possible. To find out how, you will first dissect a giant squid to extract the neuron to use as a model, and then study the neuron membrane with electric currents. Once you understand how action potential works on the membrane of a neuron, you will compare the effect of existing neurotoxins with your sample for identification.

Observe and test a neuron with electric currents

To study the axon of a nerve, you will reproduce the historically famous experiment of Dr Hodgkin and Dr Huxley, which was rewarded with a Nobel Prize, by setting the neuron in a test chamber to trigger action potentials with electric currents. You will learn about ion flows and calculate the resulting membrane equilibrium and membrane potential. Using the current clamp and voltage clamp techniques, you will identify the mechanisms behind each stage of an action potential. Once you have a good grasp of the concept of membrane potentials, you will be transported inside an axon to define the precise chain of actions leading to an action potential. Finally, you will test three different neurotoxins and analyze their effects on action potentials to deduce their most probable mode of action.

Identify the neurotoxin by its mode of action

To uncover which neurotoxin affects the hospitalized patient, you will have to compare its effect on the neuron’s action potential with three other drugs, and come up with a hypothesis about how it deregulates the neuron’s ability to transmit a signal.

Will you be able to help out the sick patient?

Get Started Now

Dissect a squid and use its giant neuron to witness the propagation of information in the shape of an action potential created by an electric current. Use this information to identify a neurotoxin affecting a hospitalized patient.

Techniques In Lab

  • Making a microelectrode
  • Current Clamp
  • Voltage clamp
  • Action potential measurement
  • Nernst Equation

Learning Objectives

At the end of this simulation, you will be able to…

  • Calculate  membrane equilibriums and membrane potential using the Nernst equation
  • Learn the ionic and electrical characteristics of each phase of an action potential.
  • Understand the role voltage-gated channels play in determining the shape of an action potential
  • Measure the resting membrane potential and then observe an action potential.
  • Record membrane current under voltage clamp
  •  Record membrane voltage under current clamp at different concentrations of extracellular sodium and potassium
  • Observe the shape of action potentials when the neuron is exposed to different  ion channel blockers

Screenshots of Action Potential Lab: Experiment with a squid neuronVirtual Lab Simulation

Collaborators

Dr. Jon Harrison

School of Life Sciences
Arizona State University

How it works

A million dollar lab in your browser

Perform experiments in virtual lab simulations to achieve core science learning outcomes. 

All our simulations run on laptop and desktop computers, and you can play our simulations without having to install any browser plugins.

See detailed minimum requirements here.

Hundreds of hours of science learning content

Our virtual laboratory simulations are aimed at university, college and high school level, within fields such as biology, biochemistry, genetics, biotechnology, chemistry, physics and more.

With access to our simulations, you will have hundreds of hours of engaging, high-quality learning content available to you.

Learn how you can use Labster in your science course

IMPORTANT: Check the original email with instructions from your instructor to verify how you should gain access.

Link Access

Did you receive a link/URL to access Labster from your teacher? This is for Labster’s Quick Access, and no login is required. See more info below.

School LMS

Are you accessing Labster from your school’s LMS, such as Canvas, Blackboard, Moodle or Brightspace? Click below to read more.

Course Code

Did you receive a Course Code from your teacher? (this is different from a purchased voucher code. Learn how to access the Labster LMS, or log in below.
IMPORTANT: Please check your original email to confirm the correct access option.

Quick Access

Did you receive a link/URL to access the simulations through Labster’s Quick Access page? If so, no login is required. See more info below.

School LMS

Are you accessing Labster from your school’s LMS, such as Canvas, Blackboard, Moodle or Brightspace? Click below to read more.

Labster LMS

Are you accessing Labster directly from the Labster.com edX LMS? View more information here or click the button below to log in.

Faculty Resources

To access the Faculty Resources page (instructors only) and review Labster simulations, please log in below.