Back to simulations

Cell Membrane and Transport: Types of transporter proteins | Virtual Lab

High School
Higher Education
Biology
Health Sciences
Health Sciences
Cell Membrane and Transport: Types of transporter proteins
Labster is used by 1,000's of amazing schools and universities
Learn more

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

About This Simulation

Discover the structure and function of cell membranes by launching cargo molecules at a virtual cell.

Learning Objectives

  • Recognize the relative permeability of lipid bilayers to different classes of molecule
  • Compare active and passive transport of molecules
  • Identify the 3 modes of active transport and the different classes of ion channel and carrier molecules

About This Simulation

Level:
High School
Higher Education
Length:
25
Min
Accessibility Mode:
Available
Languages:
English
Spanish

Lab Techniques

No lab techniques are listed for this simulation.

Related Standards

University:
NGSS:
  • High level content, may support HS-LS2
AP:
  • Biology 2.5 Membrane permeability
  • Biology 2.6 Membrane transport
LB:
  • Biology 1.4 Membrane transport
No lab techniques are listed for this simulation.

Learn More About This Simulation

This short, targeted simulation is adapted from the full-length “Cell Membrane and Transport” simulation.

You have been teleported to a virtual cell! In this simulation you will learn about the molecules that are able to diffuse across the cell membrane and the molecules that require a transporter protein to enter or leave the cell. Here, you can explore the different channels, carriers, and pumps that exist in the membrane and how they ensure that only the right molecules enter under the right conditions.

The main types of transport

Your mission begins by launching molecules at the virtual cell to discover which molecules can travel through the cell membrane alone and which molecules require transporter proteins. You will learn the role of each of the main types of transporter protein: the aquaporin, the carrier protein, and the channel protein.

Transport subtypes and gating mechanisms

Next, you will discover the role of each transporter protein subtypes, and how they work, by launching ions and molecules at the transporter proteins in the cell membrane of our virtual cell. For example, if a molecule needs to be transported by a carrier protein then you will need to identify the transporter proteins on the cell which are a subtype of the carrier protein.

Transport against chemical gradients

Finally, you will identify the transporter proteins that can transport molecules against a chemical gradient and how they work by launching molecules at the virtual cell. By the end of the simulation you will have learned about how ions and molecules can cross the cell membrane by using different types of transporter proteins.

Experience Labster for Yourself

Boost Learning with Fun

75% of students show high engagement and improved grades with Labster

Discover Simulations That Match Your Syllabus

Easily bolster your learning objectives with relevant, interactive content

Place Students in the Shoes of Real Scientists

Practice a lab procedure or visualize theory through narrative-driven scenarios

Try Now
Try the Lab Safety simulation
a group of people standing around a laptop computer

For Science Programs Providing a Learning Advantage

Professor Margaret Brady was able to enhance student learning with A&P virtual labs.
Margaret Brady
Associate Professor
North Dakota State College of Science

“They did the simulation at home, then completed the in-person lab within 30 minutes, no questions asked, and passed the quiz with flying colors.”

Lewis Mattin
PhD
Lecturer in Human Physiology
University of Westminster

"I saw some of the students who clearly didn’t necessarily like sitting there reading a book discover they could turn on Labster and keep up with the rest of the class because it spoke to them.

Melody McGill
Curriculum Coordinator
Modesto City Schools

"Having something that's engaging for the students gives teachers that opportunity to breathe and get excited again. Because they're seeing the kids light up, they're seeing the kids engage with content."

user
Kyle Hammon
Adjunct Instructor
Wenatchee Valley College

"The question always is, ‘Can we demonstrate that the students are meeting course outcomes?’ Check! We can do that.”

Dr. Melody Esfandiari
Chemistry Lecturer
San José State University

"We surveyed over 400 students. More than 90% thought Labster was easy to navigate, and that it was fun, but more importantly, most of them felt confident that they could execute the labs in person. And that confidence is a big deal."

a man in a black sweater and white shirt
Dr. Stuart Goodall
Lecturer
Northumbria University

“The Labster simulations get students to do things, and they're not just sitting there consuming a webinar where their mind can drift. They become an active participant in that learning experience.”

a black and white photo of a clock tower
the case western reserve university logo
the university of texas foundation logo
undefined
undefined
undefined
undefined
the logo for the university of washington
the university of texas at san antonio logo
undefined
a black and blue logo with a blue circle
a picture of a building with a clock on it
the university of florida logo
a black and blue logo with the words kansas on it
the logo for the university of washington
undefined
a green and white logo with the words tulane university
undefined
johns hopkins university logo on a white background
the university of skowde logo

FAQs

Find answers to frequently asked questions.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

How do students access Labster?

Labster is hosted online, which means that students only have to login from their internet browsers once an account is created.

How is Labster purchased?

Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.

How is Labster different from other learning solutions?

Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.

What types of courses does Labster support?

Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.