Enzyme Kinetics Virtual Lab

Time to complete course: 59 min.

About the Enzyme Kinetics Virtual Lab Simulation

In the Enzyme Kinetics Lab, you will learn how substrates are converted into products by catalysis. You will also learn all about the kinetics of enzyme involving the Michaelis-Menten equation and various rate constants, as well as DNA mutation and hyperactivity. You will get to run experiments using the enzyme Alcohol Dehydrogenase on a wild and mutant type to learn about Alcohol Flush Syndrome.

Use a spectrophotometer to measure enzyme reaction

In the Enzyme Kinetics lab, you will access a fully equipped workbench where you can prepare the Alcohol Dehydrogenase reaction and measure the product of Acetylaldehyde using a spectrophotometer. You will learn about the concept of spectrophotometry, how to prepare a master mix and how to calculate dilution. You will try to prepare a reaction in a 1 ml cuvette and measure the amount of product formed using the spectrophotometer.

See it all on a molecular level

Supplementary 3D animations illustrate what happens at the molecular level when the substrate and co-factor enter the active site. During the 3D animations, you will also answer quiz questions to test your understanding of the concepts. The animations are interactive, so you can identify the substrate by clicking on the different molecules.

Experiment freely and measure the results

For every measurement, you receive a progress curve displaying amounts of product formed over time. You must then analyze the outcome data and plot your own Michaelis-Menten graph to find the Km and Vmax for each enzyme. By comparing Km and Vmax values of the wild type vs. mutant Alcohol Dehydrogenase, you will be able to understand the Alcohol Flush Syndrome. With the newly added module of enzyme inhibition, you are asked to perform different enzyme inhibition experiments using three different inhibitors. You can measure product formation using several inhibitor concentrations, extract the data, create your own Lineweaver-Burk plot and solve the Ki.

Updated with a mathematically based simulator

We have recently upgraded the Enzyme Kinetics lab by implementing a mathematically based simulator. This provides you with a larger flexibility in conducting the experiments, allowing you to change parameters such as substrate concentrations, enzyme concentrations, temperature or pH and receive the corresponding results. In this semi-guided module, you can experiment with different parameters in order to find the optimal temperature and pH to reach the highest initial reaction rate.

Upon completing the Enzyme Kinetics lab, you will be familiar with the kinetics of enzyme Alcohol Dehydrogenase. Will you be able to use your newly acquired knowledge to perform the experiment and analyze the data outcome? And can you apply your knowledge to the real life example of Alcohol Dehydrogenase and the Alcohol Flush Syndrome?

Get Started Now

Investigate Alcohol Flush Syndrome by studying Alcohol Dehydrogenase kinetics. Learn how to use a spectrophotometer, perform an enzyme kinetics experiment, analyze data and understand different inhibition mechanisms.

Techniques In Lab

  • Spectrophotometry
  • Data analysis of enzyme kinetics measurements

Learning Objectives

At the end of this simulation, you will be able to…

  • Understand the experimental design of enzyme kinetics
  • Understand the Michaelis-Menten model of enzyme kinetics
  • Analyze spectrophotometer data and calculate Km and Vmax
  • Understand that kinetics of an enzyme can be modified by genetic mutations
  • Understand inhibition kinetics by using several types of inhibitors

Screenshots of Enzyme Kinetics Virtual Lab Simulation

Collaborators

Prof. Karen Skriver

Prof. Karen Skriver

Department of biology

University of Copenhagen

Dr. Gert Dandanell

Dr. Gert Dandanell

Department of biology

University of Copenhagen

Dr. Lasse Kristoffer Bak

Dr. Lasse Kristoffer Bak

School of Pharmaceutical Sciences

University of Copenhagen

Dr. Michael May

Dr. Michael May

Department of Science Education

University of Copenhagen

Dr. Susanne Jacobsen

Dr. Susanne Jacobsen

Institute for System Biology

Technical University of Denmark

Dr. Maher Abou Hachem

Dr. Maher Abou Hachem

Institute for System Biology

Technical University of Denmark

How it works

A million dollar lab in your browser

Perform experiments in virtual lab simulations to achieve core science learning outcomes. 

All our simulations run on laptop and desktop computers, and you can play our simulations without having to install any browser plugins.

See detailed minimum requirements here.

Hundreds of hours of science learning content

Our virtual laboratory simulations are aimed at university, college and high school level, within fields such as biology, biochemistry, genetics, biotechnology, chemistry, physics and more.

With access to our simulations, you will have hundreds of hours of engaging, high-quality learning content available to you.

Discover more Virtual Lab Simulations

We currently have 82 simulations that cover everything from biology and medicine to physics and chemistry.

Learn how you can use Labster in your science course