Learn how to separate a mixture of liquids into its pure components through fractional distillation. Partner with our lab assistant Dr. One to learn how to use a fractionating column and set up a successful distillation!
University / College
How do we separate homogeneous mixtures of liquids with similar boiling points? In this simulation, you will learn how to turn a mix of toluene and cyclohexane into its pure components through fractional distillation. Together with Dr. One, you will overcome the limitations of a simple distillation apparatus by adding a fractionating column.
Go beyond simple distillation
When the components of a homogeneous liquid mixture have similar boiling points, you cannot separate them entirely by simple distillation. You will, therefore, use a secret weapon: a fractionating column! When vapors move up through this column, they go through multiple cycles of evaporation and condensation. With each cycle, the vapors get increasingly rich in one component, which means that you can collect a pure product at the end of the apparatus.
Separate the mixture with fractional distillation
You will follow the mixture on its journey through the fractional distillation apparatus. You can choose to explore and learn about every part: from the distilling flask at the start, the fractionating column and condenser, to the receiving flask at the end.
Use the Lever rule to optimize the process
To visualize the journey of the mixture through the apparatus, you will use boiling point vs. composition diagrams. While these diagrams are powerful on their own, you will learn how to extract additional information from them by using the Lever rule. Are you able to predict the purity and amount of the escaping vapors? And have we chosen the appropriate procedural parameters for a successful distillation?
Length:
22
mins
Accessibility mode:
Available
Languages:
English (United States)
At the end of this simulation, you will be able to:
Explain the principles behind and procedure of separating hydrocarbon mixtures by fractional distillation
Use the Lever rule to determine appropriate procedural parameters for separating a given mixture
Deploy appropriate apparatus to perform a fractional distillation procedure
At the end of this simulation, you will be able to:
University
NGSS
IB
AP
Engage students in science through interactive learning scenarios. Simulate experiments, train lab techniques, and teach theory through visual experiences that enhance long-term learning outcomes.
300+ Web-based simulations that can be played on laptops, Chromebooks, and tablets/iPads without installing any software
Teacher dashboard to automate grading and track student progress
Embedded quizzes to help students master science content
Library of learning resources, lab reports, videos, theory pages, graphics and more
Elevate your nursing program with UbiSim, a VR solution dedicated to clinical excellence.
Labster integrates with all major LMS (Learning Management Systems) so that educators can use their gradebooks to track students’ performance data and students can keep a record of their work. Labster is compatible with Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, and Brightspace / D2L. It’s also possible to use Labster without an LMS.
Explain the principles behind and procedure of separating hydrocarbon mixtures by fractional distillation
Use the Lever rule to determine appropriate procedural parameters for separating a given mixture
Deploy appropriate apparatus to perform a fractional distillation procedure