Materials Science with Neutrons: Observe what happens inside a battery! Virtual Lab

Perform neutron diffraction and quasi-elastic neutron scattering experiments at a research facility while helping a group of scientists in the Arctic. Observe the structure of atomic layers inside a battery and see how some atoms move when it discharges.

Try our lab safety simulation

Discover one of our 200+ learning simulations today

  • Description
  • Features

About the Materials Science with Neutrons: Observe what happens inside a battery! Virtual Lab

Are you curious to find out what happens inside a battery without any fear of breaking it? And have you ever wondered why your phone runs out of power more quickly when it is cold outside? In the Materials Science with Neutrons simulation, you will learn the basics of neutrons and how they can be used as probes in materials science. You will get to perform experiments in a modern large-scale research facility that requires special permission to enter.

Observe the principles of neutron diffraction

Neutrons are subatomic particles found in the nucleus of most atoms. Through a high-energy process neutrons can be expelled from atoms to produce a free neutron beam. You cannot see the neutron beam with the naked eye but it can penetrate through almost any material. In our experiment it interacts weakly with the sample as it passes through it before finally being recorded in a detector. In the Materials Science with Neutrons simulation you will get to validate Bragg’s law and observe how changes in the wavelength of neutrons and the distance between atomic layers in the sample affect the scattering pattern of neutrons from your sample.

Perform a neutrons diffraction experiment

Now that you are an expert in neutron diffraction you are allowed to enter the diffraction instrument room. You will insert your sample in the cryostat and observe how the neutron diffraction pattern changes when the battery discharges at various temperatures.

Perform a QENS experiment

When neutrons hit the sample, they sometimes change energy due to inelastic or quasi-elastic processes in the sample. Understand the principles of quasielastic neutron scattering (QENS) through an interactive animation and perform an experiment on your battery sample. Will you be able to use these results to explain why the battery doesn’t work properly in the cold, and will you be able to assist the scientists on their mission in the Arctic?

Get started now

Perform neutron diffraction and quasi-elastic neutron scattering experiments at a research facility while helping a group of scientists in the Arctic. Observe the structure of atomic layers inside a battery and see how some atoms move when it discharges.

Techniques in lab
Neutron diffraction, Quasielastic neutron scattering (QENS), Neutron radiography (imaging)
Learning objectives

At the end of this simulation, you will be able to...

  • Distinguish the basic components of a rechargeable Li-ion battery
  • Recognize in which cases neutrons as a probe might be preferred over x-rays in materials science
  • Understand how and why neutrons are produced, moderated in wavelength, transported and detected in a large-scale materials research facility
  • Understand neutron transmission imaging and its advantages in materials science
  • Distinguish various forms of neutron interaction with a sample and the related neutron cross-sections
  • Relate atomic lattice distance in a powder sample to neutron scattering angle via Bragg’s law
  • Explain how slow molecular movement in a sample can be measured by quasi-elastic neutron scattering
Simulation features

Length: 50 Minutes
Accessibility mode: Available
Languages: English (United States)

NGSS

No direct alignment

IB

No direct alignment

AP

No direct alignment

Collaborator(s)
TM-KU