Back to simulations

Materials Science with Neutrons: Observe what happens inside a battery! | Virtual Lab

Get Pricing
No items found.
 
Materials Science with Neutrons: Observe what happens inside a battery!
Labster is used by 1,000's of amazing schools and universities
Learn more

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

About This Simulation

Perform neutron diffraction and quasi-elastic neutron scattering experiments at a research facility while helping a group of scientists in the Arctic. Observe the structure of atomic layers inside a battery and see how some atoms move when it discharges.

Learning Objectives

  • Distinguish the basic components of a rechargeable Li-ion battery
  • Recognize in which cases neutrons as a probe might be preferred over x-rays in materials science
  • Understand how and why neutrons are produced, moderated in wavelength, transported and detected in a large-scale materials research facility
  • Understand neutron transmission imaging and its advantages in materials science
  • Distinguish various forms of neutron interaction with a sample and the related neutron cross-sections
  • Relate atomic lattice distance in a powder sample to neutron scattering angle via Bragg’s law
  • Explain how slow molecular movement in a sample can be measured by quasi-elastic neutron scattering

About This Simulation

Level:
No items found.
Length:
50
Min
Accessibility Mode:
Available
Languages:
English

Lab Techniques

  • Neutron diffraction
  • Quasielastic neutron scattering (QENS)
  • Neutron radiography (imaging)
No lab techniques are listed for this simulation.

Related Standards

University:
NGSS:
  • No direct alignment
AP:
  • No direct alignment
LB:
  • No direct alignment
No lab techniques are listed for this simulation.

Learn More About This Simulation

Are you curious to find out what happens inside a battery without any fear of breaking it? And have you ever wondered why your phone runs out of power more quickly when it is cold outside? In the Materials Science with Neutrons simulation, you will learn the basics of neutrons and how they can be used as probes in materials science. You will get to perform experiments in a modern large-scale research facility that requires special permission to enter.

Observe the principles of neutron diffraction

Neutrons are subatomic particles found in the nucleus of most atoms. Through a high-energy process neutrons can be expelled from atoms to produce a free neutron beam. You cannot see the neutron beam with the naked eye but it can penetrate through almost any material. In our experiment it interacts weakly with the sample as it passes through it before finally being recorded in a detector. In the Materials Science with Neutrons simulation you will get to validate Bragg’s law and observe how changes in the wavelength of neutrons and the distance between atomic layers in the sample affect the scattering pattern of neutrons from your sample.

Perform a neutrons diffraction experiment

Now that you are an expert in neutron diffraction you are allowed to enter the diffraction instrument room. You will insert your sample in the cryostat and observe how the neutron diffraction pattern changes when the battery discharges at various temperatures.

Perform a QENS experiment

When neutrons hit the sample, they sometimes change energy due to inelastic or quasi-elastic processes in the sample. Understand the principles of quasielastic neutron scattering (QENS) through an interactive animation and perform an experiment on your battery sample. Will you be able to use these results to explain why the battery doesn’t work properly in the cold, and will you be able to assist the scientists on their mission in the Arctic?

Experience Labster for Yourself

Boost Learning with Fun

75% of students show high engagement and improved grades with Labster

Discover Simulations That Match Your Syllabus

Easily bolster your learning objectives with relevant, interactive content

Place Students in the Shoes of Real Scientists

Practice a lab procedure or visualize theory through narrative-driven scenarios

Try Now
a group of people standing around a laptop computer

For Science Programs Providing a Learning Advantage

Professor Margaret Brady was able to enhance student learning with A&P virtual labs.
Margaret Brady
Associate Professor
North Dakota State College of Science

“They did the simulation at home, then completed the in-person lab within 30 minutes, no questions asked, and passed the quiz with flying colors.”

Lewis Mattin
PhD
Lecturer in Human Physiology
University of Westminster

"I saw some of the students who clearly didn’t necessarily like sitting there reading a book discover they could turn on Labster and keep up with the rest of the class because it spoke to them.

Melody McGill
Curriculum Coordinator
Modesto City Schools

"Having something that's engaging for the students gives teachers that opportunity to breathe and get excited again. Because they're seeing the kids light up, they're seeing the kids engage with content."

user
Kyle Hammon
Adjunct Instructor
Wenatchee Valley College

"The question always is, ‘Can we demonstrate that the students are meeting course outcomes?’ Check! We can do that.”

Dr. Melody Esfandiari
Chemistry Lecturer
San José State University

"We surveyed over 400 students. More than 90% thought Labster was easy to navigate, and that it was fun, but more importantly, most of them felt confident that they could execute the labs in person. And that confidence is a big deal."

a man in a black sweater and white shirt
Dr. Stuart Goodall
Lecturer
Northumbria University

“The Labster simulations get students to do things, and they're not just sitting there consuming a webinar where their mind can drift. They become an active participant in that learning experience.”

a black and white photo of a clock tower
the case western reserve university logo
the university of texas foundation logo
undefined
undefined
undefined
undefined
the logo for the university of washington
the university of texas at san antonio logo
undefined
a black and blue logo with a blue circle
a picture of a building with a clock on it
the university of florida logo
a black and blue logo with the words kansas on it
the logo for the university of washington
undefined
a green and white logo with the words tulane university
undefined
johns hopkins university logo on a white background
the university of skowde logo

FAQs

Find answers to frequently asked questions.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

How do students access Labster?

Labster is hosted online, which means that students only have to login from their internet browsers once an account is created.

How is Labster purchased?

Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.

How is Labster different from other learning solutions?

Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.

What types of courses does Labster support?

Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.