Newton’s Laws of Motion: Understanding active and passive safety in motorsports

Newton’s Laws of Motion
Time to complete course: 23 min.

About Newton’s Laws of Motion: Understanding active and passive safety in motorsports Virtual Lab Simulation

Enter the race car mechanics lab

Do you know why Labster’s race cars win so many motorsport championships? Because our drivers dare to reach the maximum potential of themselves and their cars. Motorsport drivers not only need all parts of their car to help them accelerate, but they also need to feel safe in doing so.  In this simulation, we will use Newton’s laws of motion to break down the passive and active safety features of a race car to enable our drivers to move faster in the safest way possible.

Understanding inertia

Have you noticed that when driving a vehicle and using the brakes to stop, your body continues moving forward? In the first mission, you will use Newton’s first law of motion to understand why this happens, and the importance of optimizing a car’s features to prevent drivers from hurtling forward when suddenly braking at high speeds.

Newton’s second law of motion

In order to understand Newton’s second law of motion, observe the motion of boxes as a result of external forces. From this mission, you will understand how friction between the tires and the road impacts the acceleration of a race car.

Action and reaction forces

In most interactions, there is a pair of forces acting on the two interacting objects. This is what Newton’s third law of motion describes. Check out examples of this law in motorsports and identify the action and reaction forces while driving.

Reference frames

Is the race car moving faster if you observe it from your seat at the stadium, from the TV, or if you are a passenger? Reference frames are used to explain how motion may be relative depending on your position as an observant. Do you have all the required knowledge to join the team of motorsport engineers?

Get Started Now

Join a team of motorsport engineers and learn the basics of Newton’s laws of motion. Understand the basic principles of passive and active safety while driving a high-class race car.

Techniques In Lab

Learning Objectives

At the end of this simulation, you will be able to…

  • Describing the first law of Newton
  • Defining inertia and frames of reference
  • Deriving the second law of Newton
  • Identifying the action and reaction forces in different situations

Screenshots of Newton’s Laws of Motion: Understanding active and passive safety in motorsportsVirtual Lab Simulation

Collaborators

How it works

A million dollar lab in your browser

Perform experiments in virtual lab simulations to achieve core science learning outcomes. 

All our simulations run on laptop and desktop computers, and you can play our simulations without having to install any browser plugins.

See detailed minimum requirements here.

Hundreds of hours of science learning content

Our virtual laboratory simulations are aimed at university, college and high school level, within fields such as biology, biochemistry, genetics, biotechnology, chemistry, physics and more.

With access to our simulations, you will have hundreds of hours of engaging, high-quality learning content available to you.

Discover more Virtual Lab Simulations

We currently have 145 simulations that cover everything from biology and medicine to physics and chemistry.

Learn how you can use Labster in your science course

The simulation is already added to this package

Step 1: Choose your simulations

Find and select the simulations that you want to add to your course.

Step 2: Review simulation list

This is the list of simulations that will be added to your course. Click Download once you are ready.

%%%selected_title%%%
No simulations added yet.
    %%%selected_title%%%
    Download the .zip file and upload it to your LMS.

    Download Common Cartridge File

    Choose your Learning Management System below:
    Generating download link. Please wait...
    Congratulations! You can now upload the .zip file into your LMS by the following these instructions:

    Simulation name

    Image container

    Learning Outcomes

    Learning outcomes container

    Techniques

    Techniques container

    Simulation Description

    Description container

    Are you sure you want to delete?

    Package deleted successfully

    IMPORTANT: Check the original email with instructions from your instructor to verify how you should gain access.

    Link Access

    Did you receive a link/URL to access Labster from your teacher? This is for either “Labster Direct” or “Quick Access”, and no login is required. See info below.

    School LMS

    Are you accessing Labster from your school’s LMS, such as Canvas, Blackboard, Moodle or Brightspace? Click below to read more.

    Course Code

    Did you receive a Course Code from your teacher? (this is different from a purchased voucher code. Learn how to access the Labster LMS, or log in below.
    IMPORTANT: Please check your original email to confirm the correct access option.

    Labster Direct / Quick Access

    Did you receive a link/URL to access simulations through the Labster Direct or Quick Access pages? If so, no login is required. See info below.

    Your LMS

    Are you accessing Labster from your school’s LMS, such as Canvas, Blackboard, Moodle or Brightspace? Click below to read more.

    edX

    Are you accessing Labster directly from the Labster.com edX LMS? View more information here or click the button below to log in.

    Faculty Resources

    To access the Faculty Resources page (instructors only) and review Labster simulations, please log in below.
    Cookie Box Settings