Redox Reactions: Discover how batteries work! Virtual Lab

Build your own battery to power an electric car! Discover the chemical reactions that power batteries by finding oxidation numbers, balancing redox reactions, and experimenting with redox reactions in the lab.

  • High School
  • University / College
Watch video

Labster is used by 1000s of amazing schools and universities

Learn more

About This Simulation

Oh no! Your electric car has broken down. Can you build your own battery to get moving again? Discover the chemical reactions that power batteries by finding oxidation numbers, balancing redox reactions, and experimenting with redox reactions in the lab, then make a recommendation to your friend Hansen about whether to replace his worn-out lead-acid battery with a new lithium-ion one.

Oxidation number and redox reactions

Join Dr. One in the redox chemistry lab to find out how redox reactions power batteries. Start by using the periodic table to predict the oxidation numbers of various compounds. Then balance the charges of half-reactions and see what happens to the oxidation numbers when electrons are lost or gained!

Redox potentials and balancing reactions

Develop and test a hypothesis about the reaction between copper and different aqueous solutions based on their reduction potentials. How can these potentials help you predict the direction of a redox reaction? Batteries can be both acidic and alkaline, so next up, join Dr. One to balance redox reactions one step at a time in both environments.

Optimize a galvanic cell

Now that you understand what a redox reaction is and what happens to the electrons, learn how this can be used to generate power in a galvanic cell. Experiment with different combinations of metal for the anode and cathode to find the most powerful duo. Will you be able to complete the reactivity series and discover another way of predicting the direction of redox reactions? Remember that you set out to find the best kind of battery to fix the electric car. With everything you now know about galvanic cells, what kind of battery do you recommend to your friend?

Explore Redox Reactions: Discover how batteries work! Virtual Lab Simulation

RED BalanceHolotable
RED OxidationArrow
RED GalvanicCell

How do virtual labs work?

Engage students in science through interactive learning scenarios. Simulate experiments, train lab techniques, and teach theory through visual experiences that enhance long-term learning outcomes.

  • 250+ Web-based simulations that can be played on laptops and tablets without installing any software

  • Teacher dashboard to automate grading and track student progress

  • Embedded quizzes to help students master science content

  • Library of learning resources, lab reports, videos, theory pages, graphics and more

Get started now!
You can explore and assign simulations to your students right away.

  • Access to over 250 Labster simulations for free.
  • Exclusive educator access to all of Labster Course Manager content.
  • 30 days for free, no credit card needed.
  • Invite your students to play simulations and get their feedback.
course manager

Integrate with your LMS

Labster integrates with all major LMS (Learning Management Systems) so that educators can use their gradebooks to track students’ performance data and students can keep a record of their work. Labster is compatible with Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, and Brightspace / D2L. It’s also possible to use Labster without an LMS.

Learn more