Left arrow black
Back to simulations

Spectrophotometry: Learn the Beer-Lambert law with absorbance experiments Virtual Lab

Build your own spectrophotometer to measure the absorbance of a reaction product on Mars!

Try for FreeTry for Free
Green Checkmark Icon

High School

Logo Taylor's UniversityArizona State University LogoLogo uOttawaLogo Univ. Essex
Labster is used by 1,000's of amazing schools and universities
Learn more
Blue Arrow Right
 
Spectrophotometry: Learn the Beer-Lambert law with absorbance experiments

About this Simulation

Determine a solution's concentration using light! In this simulation, you will build your own spectrophotometer - a machine that measures how much light is absorbed by a solution. Using the spectrophotometer and Beer-Lamberts law, you will be able to determine how much product is made after you add a new Martain catalyst to your reaction.

Build your spectrophotometer 

Go under the hood of the spectrophotometer to understand how its components fit together. Try out different configurations of the components and see how they impact the light's path. The complexity of the spectrophotometer you build will increase over three levels going from a linear setup of three components, to a non-linear setup with six components. Can you figure out what each component does, and how they all work together in the finished instrument? 

Operate a spectrophotometer and collect your own data

Once you’ve successfully built your instrument, it’s time to try it out! To get started, you’ll need to interpret spectra to determine the optimal wavelength your reaction product absorbs. Once you’re ready, set the baseline, and you’re off! Observe how the absorbance changes when you increase the reactant and catalyst concentration. Then link these changes in absorbance back to the amount of product and reaction rate. 

Build confidence in applying Beer-Lambert Law to your data

Throughout the simulation, the different conceptual elements of Beer-Lambert law are explained as the spectrophotometer’s function is explored. Will you be able to rise to the final challenge, and convert your absorbance data into concentration data using Beer-Lambert's law?

Learning Objectives

At the end of this simulation, you will be able to:

  • Summarize how a spectrophotometer is used to measure absorbance data

  • Link the major components of a spectrophotometer to their functions within the instrument

  • Choose a useful wavelength for measuring a compound of interest using absorbance spectrum data

  • Suggest a protocol for measuring the absorbance of a given substance using a spectrophotometer

  • Apply the Beer-Lambert equation to absorbance data to determine substance concentration

Techniques in Lab

At the end of this simulation, you will be able to:

  • Spectrophotometry

How do virtual labs work?

Engage students in science through interactive learning scenarios. Simulate experiments, train lab techniques, and teach theory through visual experiences that enhance long-term learning outcomes.

Green Checkmark Icon

300+ Web-based simulations that can be played on laptops, Chromebooks, and tablets/iPads without installing any software

Green Checkmark Icon

Teacher dashboard to automate grading and track student progress

Green Checkmark Icon

Embedded quizzes to help students master science content

Green Checkmark Icon

Library of learning resources, lab reports, videos, theory pages, graphics and more

Book a Free Consultation

Relevant Course Packages

All Course Packages
Black arrow right

Get Started Now!

Try Labster with your students right away.
Green Checkmark Icon

Track student progress

Green Checkmark Icon

Assess with customizable quizzes

Green Checkmark Icon

Invite your students to play simulations

Green Checkmark Icon

Explore over 300 Labster simulations

Green Checkmark Icon

30 days for free, no credit card needed

Start your free trial today to discover the possibilities with Virtual Labs

Integrate with your LMS

Labster integrates with all major LMS (Learning Management Systems) so that educators can use their gradebooks to track students’ performance data and students can keep a record of their work. Labster is compatible with Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, and Brightspace / D2L. It’s also possible to use Labster without an LMS.

How to Integrate Your LMS
Blue Arrow Right

Frequently asked questions

What do students learn in the "Spectrophotometry: Learn the Beer-Lambert law with absorbance experiments" simulation?
What is the simulated Biology scenario in this virtual lab?
What other Biology labs does Labster offer?