Thermal Homeostasis: Apply thermoregulation to climate change Virtual Lab

See how deer physiologically respond to climate change. Use a metabolic chamber and Douglas bag to measure the oxygen content, humidity and volume of a deer’s exhaled breath at different temperatures.

  • University / College
Watch video

Labster is used by 1000s of amazing schools and universities

Learn more

About This Simulation

Maintaining a constant body temperature is central to an animal’s survival. In this simulation, you will apply the principles of thermal homeostasis to understand how deer thermoregulate in response to climate change. You will complete field work in Northern Canada and then carry out experiments in the lab on the effect of high temperatures on deer using a metabolic chamber and Douglas bag. You will measure oxygen content, humidity and volume of breath exhaled, and calculate the metabolic rate, evaporative heat loss and fat burned to answer how climate change affects deer in the North.

Help the International Climate Change Committee

The International Climate Change Committee wants you to investigate how large animals in the North are affected by changing temperatures. You will therefore collect internal and external body temperature data of deer in Northern Canada before returning to the lab where you will learn how changes to blood vessels can help deer maintain thermal homeostasis. By calculating and comparing potential heat production to potential heat loss, you will be able to determine how deer can optimally respond to changes in temperature.

Experiment using a metabolic chamber

You will alter the temperature and air flow through a sophisticated metabolic chamber holding a deer. An oxygen analyzer measures the oxygen content of air flowing in and out of the chamber and allows you to calculate and compare the metabolic rate of deer at different temperatures. Using a face mask on the deer attached to a Douglas bag, you will be able to measure the humidity and volume of exhaled air at different temperatures. This allows you to determine which factors change in order to help the deer maintain thermal homeostasis. In this simulation, you can repeat experiments quickly at various temperatures for deer during summer and winter months, with and without wind. An emphasis on unit conversions ensures that you are able to compare your calculations for heat production with heat loss and ultimately with fat burned per day to identify how long deer can survive in Northern conditions.

Summarize thermal homeostasis

Finally, you will summarize everything you have learned about thermal homeostasis by identifying which physiological conditions are increased and decreased during hot and cold days. Will you be able to predict how deer respond to climate change in the North?

Explore Thermal Homeostasis: Apply thermoregulation to climate change Virtual Lab Simulation

HOT Screenshot1
HOT Screenshot2
HOT Screenshot3
HOT Screenshot4

How do virtual labs work?

Engage students in science through interactive learning scenarios. Simulate experiments, train lab techniques, and teach theory through visual experiences that enhance long-term learning outcomes.

  • 250+ Web-based simulations that can be played on laptops and tablets without installing any software

  • Teacher dashboard to automate grading and track student progress

  • Embedded quizzes to help students master science content

  • Library of learning resources, lab reports, videos, theory pages, graphics and more

Get started now!
You can explore and assign simulations to your students right away.

  • Access to over 250 Labster simulations for free.
  • Exclusive educator access to all of Labster Course Manager content.
  • 30 days for free, no credit card needed.
  • Invite your students to play simulations and get their feedback.
course manager

Integrate with your LMS

Labster integrates with all major LMS (Learning Management Systems) so that educators can use their gradebooks to track students’ performance data and students can keep a record of their work. Labster is compatible with Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, and Brightspace / D2L. It’s also possible to use Labster without an LMS.

Learn more