Cell Membrane and Transport: Types of transporter proteins Virtual Lab

Discover the structure and function of cell membranes by launching cargo molecules at a virtual cell.

  • University / College
Watch video
taylors_university
essex_university
ottawa_university
arizona_university

Labster is used by 1000s of amazing schools and universities

Learn more

About This Simulation

This short, targeted simulation is adapted from the full-length “Cell Membrane and Transport” simulation.

You have been teleported to a virtual cell! In this simulation you will learn about the molecules that are able to diffuse across the cell membrane and the molecules that require a transporter protein to enter or leave the cell. Here, you can explore the different channels, carriers, and pumps that exist in the membrane and how they ensure that only the right molecules enter under the right conditions.

The main types of transport

Your mission begins by launching molecules at the virtual cell to discover which molecules can travel through the cell membrane alone and which molecules require transporter proteins. You will learn the role of each of the main types of transporter protein: the aquaporin, the carrier protein, and the channel protein.

Transport subtypes and gating mechanisms

Next, you will discover the role of each transporter protein subtypes, and how they work, by launching ions and molecules at the transporter proteins in the cell membrane of our virtual cell. For example, if a molecule needs to be transported by a carrier protein then you will need to identify the transporter proteins on the cell which are a subtype of the carrier protein.

Transport against chemical gradients

Finally, you will identify the transporter proteins that can transport molecules against a chemical gradient and how they work by launching molecules at the virtual cell. By the end of the simulation you will have learned about how ions and molecules can cross the cell membrane by using different types of transporter proteins.

Explore Cell Membrane and Transport: Types of transporter proteins Virtual Lab Simulation

AB1
AB1 (2)
AB1 (3)
AB1 (4)

How do virtual labs work?

Engage students in science through interactive learning scenarios. Simulate experiments, train lab techniques, and teach theory through visual experiences that enhance long-term learning outcomes.

  • 250+ Web-based simulations that can be played on laptops and tablets without installing any software

  • Teacher dashboard to automate grading and track student progress

  • Embedded quizzes to help students master science content

  • Library of learning resources, lab reports, videos, theory pages, graphics and more

Get started now!
You can explore and assign simulations to your students right away.

  • Access to over 250 Labster simulations for free.
  • Exclusive educator access to all of Labster Course Manager content.
  • 30 days for free, no credit card needed.
  • Invite your students to play simulations and get their feedback.
course manager

Integrate with your LMS

Labster integrates with all major LMS (Learning Management Systems) so that educators can use their gradebooks to track students’ performance data and students can keep a record of their work. Labster is compatible with Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, and Brightspace / D2L. It’s also possible to use Labster without an LMS.

Learn more
lms-blackboard-logo
lms-clever-logo
lms-canvas-logo
lms-moodle-logo
lms-google-logo
lms-sakai-logo
lms-brightspace-logo
lms-classlink-logo
lms-schoology-logo