Electrophilic Aromatic Substitution: Mechanisms and resonances Virtual Lab

Step into the virtual classroom to learn the secrets behind the electrophilic aromatic substitution. Explore the mechanism of this reaction, the effects of activating and deactivating groups, and the stability of the different resonance structures. Can you help create the perfect perfume?

  • University / College

Labster is used by 1000s of amazing schools and universities

Learn more

About This Simulation

Can you help create a best-selling scent? Perfumes are everywhere — and so are aromatic compounds. In this simulation, you will learn about the electrophilic aromatic substitution, answer a variety of quiz questions, and then plan the synthesis of your favorite aromatic compound!

Understand the mechanism

If you’re making a perfume, electrophilic aromatic substitution is a key reaction when synthesizing an aromatic molecule of interest. You’ll start your experience in a pharmacy to learn about vanillin. Then you’ll be teleported to the virtual classroom to start your experience. Here, you’ll learn in an interactive way about the mechanism of the reaction, choosing the direction of movement of electrons and the key reagents.

Choose activators and deactivators

Once you’re familiar with the reaction on a benzene ring, you’ll move to the effects of directing groups when combining an electrophile with a mono substituted benzene ring. You’ll place the different substituents on a reactivity graph and choose the right product of reaction so that you’ll be able to characterize a substituent as an activator or deactivator and predict the correct products.

The stability of resonance structures

Understanding the mechanism is not enough when planning a synthetic route. In this activity you’ll have to connect the different resonance structures of a mono substituted benzene attacked by an electrophile with the concept of stability, to help predict the dominant structure at the end of the reaction. 

A real perfume-maker

Now that you’ve acquired all this knowledge, you’re ready to go into a real lab and plan the synthesis of your favorite aromatic compound. Will you create the new best-selling perfume?

Explore Electrophilic Aromatic Substitution: Mechanisms and resonances Virtual Lab Simulation

Arrow for the movement of electrons
Electrophilic Aromatic Substitution
Directing effects and reactivity of the substituent
Predict the stable resonance

How do virtual labs work?

Engage students in science through interactive learning scenarios. Simulate experiments, train lab techniques, and teach theory through visual experiences that enhance long-term learning outcomes.

  • 250+ Web-based simulations that can be played on laptops and tablets without installing any software

  • Teacher dashboard to automate grading and track student progress

  • Embedded quizzes to help students master science content

  • Library of learning resources, lab reports, videos, theory pages, graphics and more

Get started now!
You can explore and assign simulations to your students right away.

  • Access to over 250 Labster simulations for free.
  • Exclusive educator access to all of Labster Course Manager content.
  • 30 days for free, no credit card needed.
  • Invite your students to play simulations and get their feedback.
course manager

Integrate with your LMS

Labster integrates with all major LMS (Learning Management Systems) so that educators can use their gradebooks to track students’ performance data and students can keep a record of their work. Labster is compatible with Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, and Brightspace / D2L. It’s also possible to use Labster without an LMS.

Learn more