Landscape Ecology: Determine persistence in a spatially heterogeneous landscape

Time to complete course: 30 min.

Try our lab safety simulation

Discover one of 200+ learning simulations available today

About Landscape Ecology: Determine persistence in a spatially heterogeneous landscape Virtual Lab Simulation

Not all areas within a landscape are created equal. When studying ecological processes in an environment, it is important to remember that landscapes may be spatially heterogeneous. In this simulation, you will learn to identify and compare unique patch types on the exoplanet Astakos IV and use their specific characteristics to help understand local population dynamics. Bioengineers need your help applying the principles of landscape ecology to determine if the persistence of the Propella species on Astakos IV is in danger.

Predict the Propella’s persistence on Astakos IV

A bioengineer has become fascinated by an interesting species on Astakos IV called the Propella that can generate energy from wind power. However, her team will not arrive from Earth for many years and she wants to know if the Propella species will continue to survive after the recent volcano eruptions and human growth on the planet. Using the principles of landscape ecology, you will examine colonization and extinction rates to predict the chance of the Propella’s persistence.

Determine colonization and extinction rates

You will use a variety of methods to estimate both colonization and extinction rates, which you will use together to predict the Propella’s population dynamics. Firstly, you will be tasked with interpreting GIS maps to identify a variety of different landscape patch types and paint a full mosaic of the landscape. Using impressive data visualization techniques layered on an interactive 3D map, you will analyze dispersal capabilities and specialization levels of a variety of species to help predict the colonization probability of the Propella. Extinction rates will be analyzed using both Species-Area Relationship and Endemics-Area Relationship. Finally, you will combine all of the accumulated data and landscape ecology principles to summarize the impact of recent volcano eruptions and human growth on the Propella’s population.

Suggest actions to improve persistence

You will complete your application of landscape ecology principles to predict the Propella’s chance of persistence and even suggest specific measures that could help increase the likelihood of its survival. Will you be able to help the bioengineers ensure that the Propella will be around long enough to learn its secrets?

Get Started Now

Discover unique areas within an exoplanet’s landscape and apply your findings to predict the persistence of an alien species by estimating colonization and extinction rates.

Techniques in Lab

  • Species’s persistence prediction
  • Analyze data on species’ dispersal capabilities and specialization
  • Determine colonization probability
  • Species-Area Relationship

Learning Objectives

At the end of this simulation, you will be able to…

  • Determine factors that affect the location of patches within a landscape
  • Calculate species extinction rates using species-area and endemics-area theory
  • Estimate species extinction and colonization rates in a heterogeneous landscape
  • Explain the impact of landscape spatial heterogeneity on population dynamics

Simulation Features

Length – 30 minutes
Languages – English

Examples of Related Standards


Ecology related 2nd-3rd year onwards


High level content, could support HS-LS2-6


No direct alignment


No direct alignment

Screenshots of Landscape Ecology: Determine persistence in a spatially heterogeneous landscape Virtual Lab Simulation


Dr. Michael Angilletta

School of Life Sciences
Arizona State University

How it works

A million dollar lab in your browser

Perform experiments in virtual lab simulations to achieve core science learning outcomes. 

All our simulations run on laptop and desktop computers, and you can play our simulations without having to install any browser plugins.

See detailed minimum requirements here.

Hundreds of hours of science learning content

Our virtual laboratory simulations are aimed at university, college and high school level, within fields such as biology, biochemistry, genetics, biotechnology, chemistry, physics and more.

With access to our simulations, you will have hundreds of hours of engaging, high-quality learning content available to you.

Discover more Virtual Lab Simulations

We currently have 218 simulations that cover everything from biology and medicine to physics and chemistry.

Learn how you can use Labster in your science course

Take a 15 Minute “Lab Break” with a Virtual Lab Expert

Talk to one of our Virtual Lab Experts about how Labster can engage your students with our virtual labs for online, hybrid and face-to-face courses.

Lab break coffee with us

Please fill out the form below to talk with one of our Lab Experts. 

You must opt in to receive emails from Labster. You can unsubscribe at any time.
Thank you for your submission!

Sales Demo: Discover how Labster
improves student grades and learning outcomes!

Limited to 100 people

The simulation is already added to this package

Step 1: Choose your simulations

Find and select the simulations that you want to add to your course.

Step 2: Review simulation list

This is the list of simulations that will be added to your course. Click Download once you are ready.

Press the + button next to the simulations that you want to add to your list, or add all the simulations of this package by pressing “add all simulations”.


Related Simulations

No simulations added yet.
    Download the .zip file and upload it to your LMS.

    Download Common Cartridge File

    Choose your Learning Management System below:
    Generating download link. Please wait...
    Congratulations! You can now upload the .zip file into your LMS by the following these instructions:

    Simulation name

    Image container

    Learning Outcomes

    Learning outcomes container


    Techniques container

    Simulation Description

    Description container

    Are you sure you want to delete?

    Package deleted successfully

    IMPORTANT: Check the original email with instructions from your instructor to verify how you should gain access.

    Link Access

    Did you receive a link/URL to access Labster from your teacher? This is for either “Labster Direct” or “Quick Access”, and no login is required. See info below.

    School LMS

    Are you accessing Labster from your school’s LMS, such as Canvas, Blackboard, Moodle or Brightspace? Click below to read more.
    IMPORTANT: Please check your original email to confirm the correct access option.

    Labster Direct / Quick Access

    Did you receive a link/URL to access simulations through the Labster Direct or Quick Access pages? If so, no login is required. See info below.

    Your LMS

    Are you accessing Labster from your school’s LMS, such as Canvas, Blackboard, Moodle or Brightspace? Click below to read more.

    Faculty Resources

    To access the Faculty Resources page (instructors only) and review Labster simulations, please log in below.