Back to simulations

Medical Genetics | Virtual Lab

Get Pricing
High School
Higher Education
 
Medical Genetics
Labster is used by 1,000's of amazing schools and universities
Learn more

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

About This Simulation

Learn about Mendelian genetics, linkage analysis, hereditary cancer, tumor suppressor, oncogenes and how to identify a defective gene in a family.

Learning Objectives

  • Understand Mendelian genetics and know how to perform linkage analysis
  • Perform PCR and gel electrophoresis
  • Understand the basics of breast cancer, tumor suppressor, oncogenes and BRCA1/2
  • Understand the genetic event underlying breast cancer

About This Simulation

Level:
High School
Higher Education
Length:
52
Min
Accessibility Mode:
Available
Languages:
English
French
German
Spanish
Italian

Lab Techniques

  • Gel electrophoresis
  • PCR
  • DNA sequencing
  • Protein Truncation Test
No lab techniques are listed for this simulation.

Related Standards

University:
NGSS:
  • HS-LS3-1
  • HS-LS3-2
  • HS-LS3-3
AP:
  • No direct alignment
LB:
  • No direct alignment
No lab techniques are listed for this simulation.

Learn More About This Simulation

In the Medical Genetics Lab, you will learn about Mendelian genetics, linkage analysis and finding the defected gene in a family with hereditary breast cancer. You will also learn about the genetics and development of cancer.

Constructing pedigree

Your first task is to construct a family pedigree based on gathered information. You will learn how to read a family pedigree and determine whether or not traits are hereditary. You will take a visit to the hospital and talk with a doctor to learn about hereditary cancer, Knudson two hits hypothesis and identifying genes that cause hereditary breast cancer a family.

Linkage analysis

Next, you will arrive in the laboratory to begin experimentation. You will begin with a linkage analysis using four microsatellite markers that are located close to BRCA1 and BRCA2 genes. Then you will perform PCR to amplify the microsatellite markers and analyze their genotype using gel electrophoresis. Analyzing the genotypes from family members, you will be able to determine which gene is linked to hereditary breast cancer in this family.

Protein Truncation Test

In breast cancer, mutations in BRCA1 or BRCA2 genes often result in protein truncation. In order to check if there is a mutation in BRCA1 or BRCA2 genes, you will perform Protein Truncation Test (PTT) comparing protein synthesized from the patient’s DNA versus a healthy control. By comparing the resulting protein in polyacrylamide gel electrophoresis, you will be able to conclude whether the patient has a truncated protein.

DNA sequencing

After receiving the PTT result, you need to perform a validation experiment to find out the exact mutation causing the truncated protein. You will perform DNA sequencing of this specific gene and analyze the results. To complete the analysis, you will perform a validation experiment to find the exact mutation causing truncated proteins. You will perform DNA sequencing of this specific gene and analyze the results.

Cancer: from DNA to metastasis

The Medical Genetic lab ends with a series of quiz questions assessing uour comprehension in topics regarding cancer, oncogenes, tumor suppressor and DNA repairs. Supplementary 3D animation is provided to visually portray cancer progression—defective cells divide uncontrollably and form lumps giving rise to breast cancer and subsequently metastasize to distant tissue in the body.

Experience Labster for Yourself

Boost Learning with Fun

75% of students show high engagement and improved grades with Labster

Discover Simulations That Match Your Syllabus

Easily bolster your learning objectives with relevant, interactive content

Place Students in the Shoes of Real Scientists

Practice a lab procedure or visualize theory through narrative-driven scenarios

Try Now
a group of people standing around a laptop computer

For Science Programs Providing a Learning Advantage

Professor Margaret Brady was able to enhance student learning with A&P virtual labs.
Margaret Brady
Associate Professor
North Dakota State College of Science

“They did the simulation at home, then completed the in-person lab within 30 minutes, no questions asked, and passed the quiz with flying colors.”

Lewis Mattin
PhD
Lecturer in Human Physiology
University of Westminster

"I saw some of the students who clearly didn’t necessarily like sitting there reading a book discover they could turn on Labster and keep up with the rest of the class because it spoke to them.

Melody McGill
Curriculum Coordinator
Modesto City Schools

"Having something that's engaging for the students gives teachers that opportunity to breathe and get excited again. Because they're seeing the kids light up, they're seeing the kids engage with content."

user
Kyle Hammon
Adjunct Instructor
Wenatchee Valley College

"The question always is, ‘Can we demonstrate that the students are meeting course outcomes?’ Check! We can do that.”

Dr. Melody Esfandiari
Chemistry Lecturer
San José State University

"We surveyed over 400 students. More than 90% thought Labster was easy to navigate, and that it was fun, but more importantly, most of them felt confident that they could execute the labs in person. And that confidence is a big deal."

a man in a black sweater and white shirt
Dr. Stuart Goodall
Lecturer
Northumbria University

“The Labster simulations get students to do things, and they're not just sitting there consuming a webinar where their mind can drift. They become an active participant in that learning experience.”

a black and white photo of a clock tower
the case western reserve university logo
the university of texas foundation logo
undefined
undefined
undefined
undefined
the logo for the university of washington
the university of texas at san antonio logo
undefined
a black and blue logo with a blue circle
a picture of a building with a clock on it
the university of florida logo
a black and blue logo with the words kansas on it
the logo for the university of washington
undefined
a green and white logo with the words tulane university
undefined
johns hopkins university logo on a white background
the university of skowde logo

FAQs

Find answers to frequently asked questions.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

How do students access Labster?

Labster is hosted online, which means that students only have to login from their internet browsers once an account is created.

How is Labster purchased?

Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.

How is Labster different from other learning solutions?

Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.

What types of courses does Labster support?

Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.