Back to simulations

Parkinson's Disease | Virtual Lab

Get Pricing
Higher Education
 
Parkinson's Disease
Labster is used by 1,000's of amazing schools and universities
Learn more

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

About This Simulation

Use liquid chromatography to purify a protein involved in Parkinson’s disease to learn more about its causes and evaluate the efficacy of a promising molecule for its treatment using confocal microscopy.

Learning Objectives

  • Describe the role of alpha synuclein in Parkinson’s disease
  • Describe the different parts of a liquid chromatography equipment
  • Interpret results from liquid chromatography experiments
  • Describe the difference between Ion Exchange Chromatography and Size Exclusion Chromatography
  • Evaluate the mode of action of Epigallocatechin gallate on Lewy body formation
  • Describe the benefits of using Large Unilamellar vesicles as a cell membrane in vitro model

About This Simulation

Level:
Higher Education
Length:
35
Min
Accessibility Mode:
Available
Languages:
English

Lab Techniques

  • Confocal microscopy
  • Sonication
  • Size exclusion chromatography
  • Ion exchange chromatography
No lab techniques are listed for this simulation.

Related Standards

University:
NGSS:
  • No direct alignment
AP:
  • No direct alignment
LB:
  • No direct alignment
No lab techniques are listed for this simulation.

Learn More About This Simulation

Your grandmother has recently been diagnosed with Parkinson’s disease. In this simulation, you will investigate the effects of a molecule found in green tea on the degeneration of neurons using an in vitro model.

Purifying alpha synuclein monomers

You will extract and purify monomers of alpha synuclein (aSN), a protein that is involved in the formation of Lewy bodies in the brain during the development of Parkinson’s disease. In order to do so, you will first use sonication to extract the protein, which is produced by an E. coli bacterial strain, and which was previously genetically modified by your lab assistant. Then, you will purify the extracted aSN monomers by ion exchange chromatography, while you learn about the different parts of the liquid chromatography equipment to get familiar with them before operating the equipment in the real lab.

Inducing and purifying aSN oligomers

After purifying the aSN monomers, you will induce the formation of aSN oligomers using a simple heating procedure. Once the oligomers are formed, you will further purify the sample to separate aSN monomers from oligomers using size exclusion chromatography. You don’t need to worry about long time-consuming preparation steps, because time will be fast-forwarded so you can focus on evaluating the results!

Evaluation of EGCG therapeutic potential

At the end of the Parkinson’s disease simulation, you will use the purified aSN monomers and oligomers to test the potential effects of Epigallocatechin gallate (EGCG), a polyphenol from green tea. You will use Large Unilamellar Vesicles containing a fluorescent dye as the membrane model to reproduce the in vivo conditions, and evaluate your results using confocal microscopy. Finally, you will take a trip inside the sample to find out the molecular mechanism that causes neurons to degenerate.

Will you be able to elucidate the mechanism of action of EGCG to provide your grandmother with insights about the benefits of green tea?

Experience Labster for Yourself

Boost Learning with Fun

75% of students show high engagement and improved grades with Labster

Discover Simulations That Match Your Syllabus

Easily bolster your learning objectives with relevant, interactive content

Place Students in the Shoes of Real Scientists

Practice a lab procedure or visualize theory through narrative-driven scenarios

Try Now
a group of people standing around a laptop computer

For Science Programs Providing a Learning Advantage

Professor Margaret Brady was able to enhance student learning with A&P virtual labs.
Margaret Brady
Associate Professor
North Dakota State College of Science

“They did the simulation at home, then completed the in-person lab within 30 minutes, no questions asked, and passed the quiz with flying colors.”

Lewis Mattin
PhD
Lecturer in Human Physiology
University of Westminster

"I saw some of the students who clearly didn’t necessarily like sitting there reading a book discover they could turn on Labster and keep up with the rest of the class because it spoke to them.

Melody McGill
Curriculum Coordinator
Modesto City Schools

"Having something that's engaging for the students gives teachers that opportunity to breathe and get excited again. Because they're seeing the kids light up, they're seeing the kids engage with content."

user
Kyle Hammon
Adjunct Instructor
Wenatchee Valley College

"The question always is, ‘Can we demonstrate that the students are meeting course outcomes?’ Check! We can do that.”

Dr. Melody Esfandiari
Chemistry Lecturer
San José State University

"We surveyed over 400 students. More than 90% thought Labster was easy to navigate, and that it was fun, but more importantly, most of them felt confident that they could execute the labs in person. And that confidence is a big deal."

a man in a black sweater and white shirt
Dr. Stuart Goodall
Lecturer
Northumbria University

“The Labster simulations get students to do things, and they're not just sitting there consuming a webinar where their mind can drift. They become an active participant in that learning experience.”

a black and white photo of a clock tower
the case western reserve university logo
the university of texas foundation logo
undefined
undefined
undefined
undefined
the logo for the university of washington
the university of texas at san antonio logo
undefined
a black and blue logo with a blue circle
a picture of a building with a clock on it
the university of florida logo
a black and blue logo with the words kansas on it
the logo for the university of washington
undefined
a green and white logo with the words tulane university
undefined
johns hopkins university logo on a white background
the university of skowde logo

FAQs

Find answers to frequently asked questions.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

How do students access Labster?

Labster is hosted online, which means that students only have to login from their internet browsers once an account is created.

How is Labster purchased?

Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.

How is Labster different from other learning solutions?

Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.

What types of courses does Labster support?

Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.