Left arrow black
Back to simulations

Cancer Pharmacology: Provide recommendations in a multi-million dollar project Virtual Lab

Review the usefulness of a multi-million dollar operation to identify potential drugs for cancer chemotherapy, and provide your recommendations to the Project Leader.

Try for FreeTry for Free
Green Checkmark Icon

University / College

Logo Taylor's UniversityArizona State University LogoLogo uOttawaLogo Univ. Essex
Labster is used by 1,000's of amazing schools and universities
Learn more
Blue Arrow Right
 
Cancer Pharmacology: Provide recommendations in a multi-million dollar project

About this Simulation

In this simulation, you will learn which tools are needed to screen thousands of chemical compounds in order to identify promising candidates for the treatment of different types of cancer. In particular, you will gain insight into the principles and limitations of widely used in vitro assays in the context of anti-cancer drug screenings. As a pharmacology expert, you will test the robustness of those commonly used techniques and help a screening facility to assess the risk for false negative results.

Prepare cells and drugs for chemosensitivity testing

Your main task in the Cancer Pharmacology simulation is to reproduce the screening facility’s chemosensitivity in vitro protocol to investigate the cause of false negative results. The protocol in question is a widely used cell survival assay using MTT reagent and performed with conventional cancer cell lines. The Project Leader suggests to perform the test with two well-known chemotherapy drugs: epirubicin and cyclophosphamide. In this part of the simulation, you will learn how to perform common steps of chemosensitivity testing and learn about basic pharmacology tools. Most importantly, you will count living cells of a cell culture solution and calculate how much of the culture you need for your experiment. You will also prepare stock solutions of both drugs with a given concentration to create a dilution series for the treatment of the cancer cells.

Perform the MTT assay

Once the cells have been prepared and incubated with the drugs, it is time to use MTT as a cell survival indicator. You will be able to follow on a molecular level how MTT specifically reacts with mitochondrial enzymes leading to a color colorimetric change that can be measured with a spectrophotometer. In this mission, you will work with a multi-channel pipette and 96 well plates to perform the assay as used in many pharmacology labs worldwide.

Determine EC50 and interpret your results

The result of the serial drug dilution in the MTT assay will provide the basis for creating a dose-response curve and for determining the half-maximal effective concentration (EC50) of both clinically used drugs. Which recommendations will you provide the Project Leader with about the usefulness of the commonly applied in vitro assays?

Learning Objectives

At the end of this simulation, you will be able to:

  • Understand the principles and limitations of chemosensitivity testing in the context of in vitro based anticancer drug screening

  • Conduct, analyze and interpret in vitro chemosensitivity tests using the MTT assay

  • Evaluate the advantages and disadvantages of chemosensitivity tests for in vitro based screening programs

  • Prepare cell cultures for chemosensitivity testing

  • Determine viable cell numbers using an automated cell counter

  • Conduct the MTT assay to assess cell survival following drug exposure

  • Generate dose response curves and determine half-maximal effective concentration (EC50) values

  • Interpret the results obtained in the chemosensitivity assay

  • Understand the mechanisms of action of cyclophosphamide and epirubicin

Techniques in Lab

At the end of this simulation, you will be able to:

  • Cell counting
  • EC50 determination
  • Drug treatment of cancer cells
  • MTT assay

How do virtual labs work?

Engage students in science through interactive learning scenarios. Simulate experiments, train lab techniques, and teach theory through visual experiences that enhance long-term learning outcomes.

Green Checkmark Icon

300+ Web-based simulations that can be played on laptops, Chromebooks, and tablets/iPads without installing any software

Green Checkmark Icon

Teacher dashboard to automate grading and track student progress

Green Checkmark Icon

Embedded quizzes to help students master science content

Green Checkmark Icon

Library of learning resources, lab reports, videos, theory pages, graphics and more

Book a Free Consultation

Relevant Course Packages

All Course Packages
Black arrow right

Get Started Now!

Try Labster with your students right away.
Green Checkmark Icon

Track student progress

Green Checkmark Icon

Assess with embedded quiz questions

Green Checkmark Icon

Invite your students to play simulations

Green Checkmark Icon

Explore over 300 Labster simulations

Green Checkmark Icon

30 days for free, no credit card needed

Start your free trial today to discover the possibilities with Virtual Labs

Integrate with your LMS

Labster integrates with all major LMS (Learning Management Systems) so that educators can use their gradebooks to track students’ performance data and students can keep a record of their work. Labster is compatible with Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, and Brightspace / D2L. It’s also possible to use Labster without an LMS.

How to Integrate Your LMS
Blue Arrow Right

Frequently asked questions

What do students learn in the "Cancer Pharmacology: Provide recommendations in a multi-million dollar project" simulation?
What is the simulated Medicine scenario in this virtual lab?
What other Medicine labs does Labster offer?