Cellular Respiration: Measuring energy consumption during exercise Virtual Lab

Help basketball players understand how the food they eat gets converted to energy through glycolysis, the Krebs cycle and the electron transport chain. Use a mouse model to experiment on the effect of exercise intensity on oxygen and glucose consumption.

  • University / College
Watch video
taylors_university
essex_university
ottawa_university
arizona_university

Labster is used by 1000s of amazing schools and universities

Learn more

About This Simulation

What does it mean to work up an appetite? In this simulation, you will learn about how we metabolize glucose through aerobic and anaerobic respiration. You will be taken through the three stages of cellular respiration: glycolysis, the Krebs cycle and the electron transport chain.

Evaluate cellular respiration through exercise

Beginning by outlining the structural changes that take place during phosphorylation and glycolysis, you will identify the important products of the Krebs cycle and follow their electrons through the electron transport chain. Then, you will apply what you have learned about cellular respiration to experiments on exercise intensity and oxygen consumption using a mouse model.

Respirometry and blood sample analysis

You will measure cellular respiration by analyzing the blood glucose and lactic acid concentrations of basketball players throughout their game. This data will be compared to experimental exercise data collected using a mouse model and respirometry. The experimental portion of this simulation is supported with strong theoretical explanations of the central steps of glycolysis, phosphorylation and the Krebs cycle using 3D molecules and interactive feedback. The simulation includes an immersive experience of jumping inside mitochondria that demonstrates how protein complexes in the inner membrane of the mitochondria contribute to the electrochemical gradient used by ATP synthase to generate ATP.

Help athletes perform during exercise

Experiment using a mouse model to understand the role of glucose, lactic acid and oxygen during exercise. Apply your knowledge from mouse experiments and of glycolysis, the Krebs cycle and the electron transport chain to help basketball players perform their best during their game.

Explore Cellular Respiration: Measuring energy consumption during exercise Virtual Lab Simulation

CRV-1
CRV-3
CRV-4

How do virtual labs work?

Engage students in science through interactive learning scenarios. Simulate experiments, train lab techniques, and teach theory through visual experiences that enhance long-term learning outcomes.

  • 250+ Web-based simulations that can be played on laptops and tablets without installing any software

  • Teacher dashboard to automate grading and track student progress

  • Embedded quizzes to help students master science content

  • Library of learning resources, lab reports, videos, theory pages, graphics and more

Get started now!
You can explore and assign simulations to your students right away.

  • Access to over 250 Labster simulations for free.
  • Exclusive educator access to all of Labster Course Manager content.
  • 30 days for free, no credit card needed.
  • Invite your students to play simulations and get their feedback.
course manager

Integrate with your LMS

Labster integrates with all major LMS (Learning Management Systems) so that educators can use their gradebooks to track students’ performance data and students can keep a record of their work. Labster is compatible with Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, and Brightspace / D2L. It’s also possible to use Labster without an LMS.

Learn more
lms-blackboard-logo
lms-clever-logo
lms-canvas-logo
lms-moodle-logo
lms-google-logo
lms-sakai-logo
lms-brightspace-logo
lms-classlink-logo
lms-schoology-logo