Left arrow black
Back to simulations

Gel Electrophoresis: Visualize and separate nucleic acids Virtual Lab

Solve a crime by using DNA fingerprinting to identify a thief. Use nucleic acid gel electrophoresis to separate and visualize DNA molecules and watch an animation to understand what happens inside the gel tank.

Try for Free
Green Checkmark Icon

Professional

Green Checkmark Icon

High School

Green Checkmark Icon

University / College

Logo Taylor's UniversityArizona State University LogoLogo uOttawaLogo Univ. Essex
Labster is used by 1000s of amazing schools and universities
Learn more
Blue Arrow Right
 
Gel Electrophoresis: Visualize and separate nucleic acids

About this Simulation

Your peanut butter keeps getting stolen and it is time to catch the thief. In this simulation, you will learn how you can use DNA fingerprinting to identify individuals. You will use gel electrophoresis to separate and visualize DNA fragments.

Loading the gel

Join Dr. One in the molecular biology lab. The DNA samples from the crime scene and two suspects have already been collected, extracted, and amplified for you. You will start by learning about sample preparation and loading the samples into an agarose gel with a pipette.

Look inside the gel

Once you have loaded all the samples into the gel, you can start the gel electrophoresis process. While this runs, you will dive into the gel tank and discover how DNA fragments are separated by size with this technique through an immersive animation.

Analyzing the gel

Now that you understand how gel electrophoresis works, you will return to the molecular biology lab. The DNA fragments have now been separated and visualized so you can compare the band patterns of the two suspect samples with that of the crime scene sample. Will you be able to catch the thief?

Learning Objectives

At the end of this simulation, you will be able to:

  • Explain the visualization and separation of nucleic acid molecules through gel electrophoresis

  • Summarize how nucleic acid molecules migrate through an agarose gel

  • Explain the principles behind size separation and direction of migration

  • Analyze and interpret a nucleic acid gel by using a DNA ladder and controls

Techniques in Lab

At the end of this simulation, you will be able to:

  • Agarose gel electrophoresis

Explore:

Gel Electrophoresis: Visualize and separate nucleic acids

White design element
White Play Button

How do virtual labs work?

Engage students in science through interactive learning scenarios. Simulate experiments, train lab techniques, and teach theory through visual experiences that enhance long-term learning outcomes.

Green Checkmark Icon

300+ Web-based simulations that can be played on laptops, Chromebooks, and tablets/iPads without installing any software

Green Checkmark Icon

Teacher dashboard to automate grading and track student progress

Green Checkmark Icon

Embedded quizzes to help students master science content

Green Checkmark Icon

Library of learning resources, lab reports, videos, theory pages, graphics and more

Contact us

Get Started Now!

Try Labster with your students right away.
Green Checkmark Icon

Track student progress

Green Checkmark Icon

Assess with embedded quiz questions

Green Checkmark Icon

Invite your students to play simulations

Green Checkmark Icon

Explore over 300 Labster simulations

Green Checkmark Icon

30 days for free, no credit card needed

Start your free trial today to discover the possibilities with Virtual Labs

Integrate with your LMS

Labster integrates with all major LMS (Learning Management Systems) so that educators can use their gradebooks to track students’ performance data and students can keep a record of their work. Labster is compatible with Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, and Brightspace / D2L. It’s also possible to use Labster without an LMS.

Learn more
Blue Arrow Right